Skip to main content

Table 2 Model fit information and selection criteria for latent class models with 1 to 20 classes

From: Patterns of digital health access and use among US adults: a latent class analysis

Classes

# Parameters

Log-likelihood

Entropy

AIC

CAIC

BIC

SABIC

VLMR-LR

Desideratum:

-

-

 > 0.8

Lowest value

Lowest value

Lowest value

Lowest value

Greater magnitude indicates greater improvement over the previous model*

1

64

-299,539

-

599,206

599,753

599,689

599,485

-

2

129

-214,242

0.99

428,742

429,845

429,716

429,306

164,838

3

194

-172,165

0.99

344,718

346,376

346,182

345,566

81,315

4

259

-159,902

0.96

320,321

322,535

322,276

321,453

23,700

5

324

-154,752

0.96

310,152

312,921

312,597

311,567

9952

6

389

-149,695

0.97

300,168

303,493

303,104

301,868

9772

7

454

-146,777

0.97

294,461

298,341

297,887

296,445

5640

8

519

-143,929

0.94

288,896

293,332

292,813

291,163

5503

9

584

-141,397

0.93

283,962

288,953

288,369

286,513

4893

10

649

-139,854

0.92

281,007

286,553

285,904

283,842

2981

11

714

-139,262

0.91

279,952

286,054

285,340

283,071

1145

12

779

-138,713

0.90

278,984

285,641

284,862

282,387

1061

13

844

-138,198

0.89

278,085

285,298

284,454

281,772

994

14

909

-137,722

0.88

277,262

285,031

284,122

281,233

920

15

974

-137,292

0.88

276,533

284,857

283,883

280,788

831

16

1039

-136,895

0.88

275,867

284,747

283,708

280,406

769

17

1104

-136,561

0.88

275,330

284,765

283,661

280,152

645

18

1169

-136,233

0.88

274,805

284,796

283,627

279,912

633

19

1234

-135,978

0.87

274,423

284,969

283,735

279,814

494

20

1299

-135,749

0.87

274,096

285,198

283,899

279,771

442

  1. AIC  Akaike information criterion, BIC Bayesian information criterion, CAIC Consistent AIC, SABIC Sample size adjusted BIC, VLMR-LR  Vuong-Lo-Mendell-Rubin adjusted likelihood ratio (of k class model to k-1 class model, hence none for 1 class model)
  2. *All likelihood ratio tests have p < 0.001, indicating statistically significant improvement of each k-class model compared to previous k-1 class model
  3. Fit for latent class models without covariates
  4. Bold indicates selected model