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Abstract 

Background Digital technologies allow users to engage in health‑related behaviors associated with positive out‑
comes. We aimed to identify classes of US adults with distinct digital technologies access and health use patterns 
and characterize class composition. Data came from Health Information National Trends Survey Wave 5 Cycles 1–4, 
a nationally representative cross‑sectional survey of US adults (N = 13,993). We used latent class analysis to identify 
digital technologies access and health use patterns based on 32 ternary variables of behaviors and access to requisite 
technologies and platforms, including the internet, internet‑enabled devices, health monitors, and electronic health 
records (EHRs). We ran a multinomial logistic regression to identify sociodemographic and health correlates of class 
membership (n = 10,734).

Results Ten classes captured patterns of digital technology access and health use among US adults. This included 
a digitally isolated, a mobile‑dependent, and a super user class, which made up 8.9%, 7.8%, and 13.6% of US adults, 
respectively, and captured access patterns from only basic cellphones and health monitors to near complete 
access to web‑, mobile‑, and EHR‑based platforms. Half of US adults belonged to classes that lacked access to EHRs 
and relied on alternative web‑based tools typical of patient portals. The proportion of class members who used 
digital technologies for health purposes varied from small to large. Older and less educated adults had lower odds 
of belonging to classes characterized by access or engagement in health behaviors. Hispanic and Asian adults had 
higher odds of belonging to the mobile‑dependent class. Individuals without a regular healthcare provider and those 
who had not visited a provider in the past year were more likely to belong to classes with limited digital technologies 
access or health use.

Discussion Only one third of US adults belonged to classes that had near complete access to digital technologies 
and whose members engaged in almost all health behaviors examined. Sex, age, and education were associated 
with membership in classes that lacked access to 1 + digital technologies or exhibited none to limited health uses 
of such technologies. Results can guide efforts to improve access and health use of digital technologies to maximize 
associated health benefits and minimize disparities.
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Introduction
Digital technologies allow users to engage in various 
health-supporting activities [1]. In 2018, 70.1% of US 
adults looked up health information online [2]. They are 
increasingly using mobile devices (38.9%) and wellness 
and medical wearables (35.3%) to track their health, 
and 17.2% share self-generated data with healthcare 
professionals [2]. In 2020, 39.5% of US adults accessed 
their electronic medical records [3]. Use of digital tech-
nologies is broadly associated with positive health out-
comes. For example, online health information seeking 
is associated with being informed, holding positive 
health attitudes, and adopting healthy behaviors [4–7]. 
Social media use is associated with increased access to 
health information and perceived social support [8–
10]. Text messaging and app-based interventions are 
effective for behavior modification and health manage-
ment [11, 12]. Fitness and medical wearables are use-
ful for health monitoring, detection, and prediction of 
health outcomes, which can improve medical decisions 
and patient outcomes [13–17]. Patients with access to 
their medical records make informed decisions, adhere 
to preventative behaviors and treatment regimens, are 
satisfied with care, and have better patient-physician 
relationships [18–21].

Despite digital technology access and use being at 
an all-time high, disparities exist. In 2021, 77% of US 
adults had broadband internet at home [22] and 97% 
owned mobile phones, with smartphone ownership at 
85% and basic cellphone ownership at 11% [23]. How-
ever, younger, more educated, and high-income earning 
adults are more likely to own tablets and smartphones 
[23]. A smaller percentage of Black and Hispanic adults 
own a laptop/desktop computer or have home broadband 
than Whites [24]. Younger, less educated, racial/ethnic 
minority, and low-income adults are also more likely to 
be smartphone-dependent for internet access [23]. Look-
ing across multiple technologies, 63% of adults living in 
households earning ≥ $100,000 annually have joint access 
to broadband internet, a computer, smartphone, and tab-
let compared to only 23% of adults in households earn-
ing < $30,000 [25].

Beyond access, sociodemographic disparities mani-
fest in the use of digital technologies. For exam-
ple, although 93% of US adults use the internet, only 
75% of adults aged 65 + , 86% of adults with high 
school education or less, and 86% of adults with 
income < $30,000 use the internet compared to ≥ 98% 
of adults ages 18–49, college graduates, and those 
with income ≥ $50,000 [22]. Despite a narrowing gap 
between urban/suburban and rural Americans’ adop-
tion of home broadband, rural residents go online 
less frequently than their urban counterparts [26]. 

Inequities also exist in use of specific technologies such 
as mobile health apps [27, 28], wearable devices [29, 
30], and patient portals [31–36].

Access to and use of digital technologies are prereq-
uisites for reaping associated health benefits. Patterns 
of digital technology access and use are interconnected 
in nature, resulting in countless combinations that can 
impact health outcomes in both direction and mag-
nitude whereby they can exacerbate inequalities or 
compound health benefits [28, 37, 38]. Prior studies 
on digital technology access and use have focused on 
either access or use patterns of individual technologies 
such as mobile health apps [27], wearables [30], and 
patient portals rather than considering access and use 
jointly [31–33, 39, 40]. Furthermore, prior studies gen-
erally defined patterns of digital health technologies a 
priori [41, 42], potentially failing to identify nuanced 
and previously unconsidered patterns of technol-
ogy access and use. When studies report on multiple 
technologies, which can provide multiple avenues for 
engaging in health behaviors, there is no differentiation 
between general use and health-related use of those 
technologies [43, 44]. Finally, previous research often 
focused on specialized population (e.g., adults with 
chronic illness [40], elderly adults [33, 44]) rather than 
nationally representative samples, raising uncertainties 
about the generalizability of their findings.

Using a nationally representative sample of US adults, 
we aimed to identify latent classes of adults based on 
their patterns of access to and health uses of digital tech-
nologies  (aim 1) and sociodemographic and health cor-
relates of membership in these classes (aim 2).

Methods
Data
Data came from 13,993 US adults ≥ 18  years old who 
responded to the Health Information National Trends 
Survey (HINTS) Wave 5, Cycles 1 (2017) through 4 
(2020), thereafter H5C1 through H5C4. HINTS is a 
nationally representative cross-sectional survey of US 
adults which oversamples areas with high concentrations 
of racial and ethnic minority populations to increase pre-
cision of estimates for minority subpopulations [45]. All 
surveys were distributed by mail and answered via paper-
and-pencil except for H5C3 where web options were 
offered to certain participants to examine the effects of 
mixed-mode design on response rates and sample rep-
resentativeness. To avoid introducing mode of data col-
lection as a potential source of bias, we only included the 
paper-and-pencil responses of H5C3 and their corre-
sponding sampling weights. Data were collected between 
1/25/2017 and 6/15/2020.
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Measures
We identified 11 digital technology access questions 
and 32 health use questions. Access questions covered 
accessing the internet, using a home computer to access 
the internet, having a basic cell phone or smart mobile 
device, using electronic health monitors (including medi-
cal and fitness devices), and having been offered access 
to electronic health records (EHRs). Health use ques-
tions spanned health behaviors that people can engage 
in on the web and social media (e.g., seeking health 
information online), mobile and wearable devices (e.g., 
downloading health and wellness apps), and EHRs (e.g., 
viewing test results). Launched in 2002–2003, HINTS 
has been an authority resource on core topics including 
technology access and use. All HINTS administrations 
undergo data quality measures before (and after) data 
collection including cognitive testing of its survey instru-
ments [46, 47].

We used all access and use questions available in H5C1 
through H5C4 to create 32 three-level indicators that 
capture both access to prerequisite digital technologies 
and corresponding behaviors. Indicator variables were 
coded as: 2 = respondent had access to requisite technol-
ogies and engaged in behavior, 1 = respondent had access 
to requisite technologies but did not engage in behavior, 
and 0 = respondent did not have access to requisite tech-
nologies and did not engage in behavior (Supplementary 
Note 1). This coding scheme differentiated between one’s 
choice to not engage in a behavior and one’s inability to 
engage in that behavior due to lack of access to requisite 
technologies.

Analysis
We conducted a latent class analysis (LCA), a structural 
equation modeling analysis in which observed indicator 
variables are related to a discrete latent class variable. 
Using Vermunt’s 3-step approach [48], step 1 consisted 
of running an LCA (N= 13,993) with 32 indicators and 
no sociodemographic covariates. We fit models with 1 to 
20 classes, which were evaluated using statistical fit indi-
ces to select a model with a specified number of classes. 
The fit indices used were Akaike’s information criterion 
(AIC), consistent AIC (CAIC), Bayesian information cri-
terion (BIC), sample size-adjusted BIC (SABIC), model 
entropy, and the Vuong-Lo-Mendell-Rubin adjusted 
likelihood ratio test (VLMR-LRT) [49]. In step 2, we esti-
mated participant probabilities of membership to each 
latent class, the most likely class a participant belonged 
to, and the corresponding measurement error. In step 3, 
we re-fit the latent class model selected in step 1 while 
including a multinomial logistic regression of most likely 
class membership onto the sociodemographic (e.g., sex) 

and health (e.g., having a regular healthcare provider) 
covariates (n= 10,734), accounting for measurement 
error in the most likely class variable obtained in step 2 
[48, 50].

LCA was done in Mplus [51] via the MplusAutoma-
tion package (version 1.1.0) in R [52], with steps two and 
three performed together using the R3STEP Mplus auxil-
iary setting [50]. Population estimates were calculated in 
R. Overall sampling weights were used in all analyses to 
account for HINTS complex survey design and produce 
nationally representative estimates. Jackknife replicate 
weights (50 sets of weights each year, 200 total) were used 
to calculate standard errors and confidence intervals for 
population estimates and regression odds ratios [45, 53]. 
Full information maximum likelihood was used to han-
dle missing data in latent class indicators where a survey 
response contributed to the LCA if data were available 
for at least one indicator. Only 33 responses were missing 
on all indicators and were excluded from the initial LCA. 
For the multinomial logistic regression, listwise deletion 
was used, which resulted in the exclusion of ~ 22% of the 
analytic sample due to covariate missingness (Supple-
mentary Note 1).

Results
Weighted socio demographic sample characteristics 
appear in Table 1.

Digital technologies access and health use patterns (Aim 1)
A ten-class model (Fig.  1) of distinct digital technol-
ogy access and health use patterns emerged from Step 1 
of the LCA with a balance of high entropy and good fit 
(Table 2). Classes 1 and 2 included digitally isolated and 
mobile-dependent individuals who made up an estimated 
8.9% and 7.8% of US adults, respectively. Health uses of 
digital technologies among members of class 1 included 
texting healthcare providers (7.8%), tracking their health 
with wearables (1.8%), and sharing data from monitoring 
devices with healthcare providers (8.5%) (Fig. 1). Roughly 
25% of class 2 members engaged in mobile-based health 
behaviors, ranging from 5.3% who used wearable devices 
to track their health to 23.8% who used smart mobile 
devices to make medical treatment decisions.

Members of classes 3 and 4, which made up 2.3% and 
2.1% of US adults, lacked access to mobile devices but 
were digitally connected via internet-enabled comput-
ers/laptops and basic cell phones. The primary behavior 
that members of classes 3 and 4 engaged in was online 
health information seeking for oneself (49.9%, 65.3%) and 
for someone else (32.6%, 39.9%). Roughly < 20% and < 40% 
of class 3 and 4 members engaged in all other web-based 
behaviors. Unlike class 3, class 4 members had access to 
EHRs with an estimated 43.5% of its members logging in 
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Table 1 Weighted sample characteristics, HINTS 5, cycles 1 through 4, 2017–2020, N = 13,993

H5C1 (n = 3,287) H5C2 (n = 3,498) H5C3a (n = 3,349) H5C4 (n = 3,864) Total (N = 13,993)
% (95% CI) % (95% CI) % (95% CI) % (95% CI) % (95% CI)

Sex
 Male 48.09 (47.81, 48.38) 48.12 (47.75, 48.50) 48.12 (47.53, 48.70) 47.57 (46.93, 48.22) 47.98 (47.73, 48.22)

 Female 50.29 (49.89, 50.69) 50.52 (50.14, 50.91) 50.16 (49.57, 50.74) 50.22 (49.74, 50.70) 50.30 (50.06, 50.53)

 Missing 1.62 (1.17, 2.07) 1.35 (0.89, 1.81) 1.72 (0.92, 2.53) 2.20 (1.46, 2.95) 1.73 (1.41, 2.05)

Age (years)
 18–34 21.14 (18.35, 23.92) 23.11 (20.53, 25.70) 22.90 (20.16, 25.65) 25.47 (23.44, 27.50) 23.17 (21.89, 24.44)

 35–49 27.67 (24.49, 30.85) 26.09 (23.81, 28.37) 24.60 (21.77, 27.43) 24.80 (22.71, 26.89) 25.78 (24.47, 27.09)

 50–64 29.03 (27.32, 30.75) 29.79 (27.84, 31.75) 30.07 (28.00, 32.14) 26.95 (25.24, 28.66) 28.95 (28.02, 29.89)

  ≥ 65 18.63 (18.41, 18.85) 18.99 (18.69, 19.30) 19.53 (19.30, 19.76) 19.98 (19.61, 20.35) 19.29 (19.14, 19.43)

Missing 3.53 (2.46, 4.60) 2.02 (1.46, 2.57) 2.90 (1.77, 4.02) 2.80 (1.96, 3.64) 2.81 (2.35, 3.27)

Race/ethnicity
 Non‑Hispanic Asian 5.10 (4.88, 5.32) 4.76 (4.07, 5.45) 4.93 (4.33, 5.53) 4.83 (4.34, 5.32) 4.90 (4.64, 5.17)

 Non‑Hispanic Black 9.45 (8.58, 10.32) 9.99 (9.49, 10.48) 10.50 (10.02, 10.97) 10.32 (9.76, 10.89) 10.07 (9.76, 10.38)

 Hispanic 14.48 (14.01, 14.95) 14.71 (14.16, 15.26) 15.47 (15.18, 15.75) 15.73 (15.55, 15.91) 15.10 (14.90, 15.30)

 Non‑Hispanic White 60.39 (59.39, 61.39) 59.75 (58.76, 60.74) 58.48 (57.54, 59.42) 58.70 (57.58, 59.82) 59.33 (58.82, 59.83)

 Non‑Hispanic  Otherb 2.52 (2.33, 2.71) 3.00 (2.51, 3.50) 2.73 (2.40, 3.07) 3.09 (2.61, 3.56) 2.84 (2.64, 3.03)

 Missing 8.06 (6.64, 9.48) 7.79 (6.39, 9.19) 7.89 (6.51, 9.27) 7.33 (5.98, 8.68) 7.76 (7.07, 8.46)

Sexual orientation
 Heterosexual 90.11 (88.42, 91.79) 89.02 (86.97, 91.07) 89.30 (87.69, 90.92) 88.42 (86.90, 89.94) 89.21 (88.34, 90.07)

 Non‑heterosexual 4.57 (2.92, 6.23) 4.46 (2.84, 6.07) 4.25 (2.87, 5.64) 5.06 (3.76, 6.36) 4.59 (3.84, 5.34)

 Missing 5.32 (4.39, 6.25) 6.52 (4.99, 8.04) 6.44 (5.08, 7.80) 6.52 (5.44, 7.60) 6.20 (5.58, 6.83)

Annual household income
  < $20,000 15.82 (14.00, 17.64) 15.85 (13.55, 18.14) 17.07 (13.98, 20.16) 13.89 (12.21, 15.57) 15.65 (14.50, 16.80)

 $20,000—$49,999 24.61 (22.47, 26.74) 22.79 (20.44, 25.14) 21.53 (19.13, 23.94) 22.12 (20.15, 24.08) 22.75 (21.65, 23.86)

 $50,000—$74,999 17.36 (15.43, 19.29) 16.00 (13.83, 18.16) 17.07 (14.96, 19.19) 16.74 (14.03, 19.45) 16.79 (15.66, 17.92)

  ≥ $75,000 32.99 (30.47, 35.52) 35.29 (32.47, 38.12) 35.27 (32.67, 37.87) 38.92 (35.97, 41.88) 35.64 (34.27, 37.00)

 Missing 9.22 (7.28, 11.16) 10.07 (8.71, 11.44) 9.06 (7.64, 10.48) 8.33 (6.84, 9.82) 9.17 (8.38, 9.95)

Education
  < High school 8.47 (6.67, 10.27) 8.86 (7.31, 10.41) 7.14 (5.65, 8.63) 7.81 (6.27, 9.36) 8.07 (7.27, 8.87)

 High school graduate 22.48 (20.65, 24.32) 21.97 (20.40, 23.53) 23.12 (21.18, 25.06) 21.89 (20.21, 23.58) 22.36 (21.48, 23.24)

 Some college, vocational, or technical 
training

32.17 (30.62, 33.72) 39.43 (37.76, 41.10) 38.99 (37.11, 40.86) 38.10 (36.42, 39.78) 37.19 (36.34, 38.04)

 College graduate or postgraduate 34.85 (34.43, 35.26) 28.38 (28.10, 28.65) 28.76 (28.45, 29.06) 29.44 (29.24, 29.64) 30.34 (30.19, 30.49)

 Missing 2.03 (1.45, 2.61) 1.37 (0.80, 1.94) 2.00 (1.24, 2.75) 2.76 (1.76, 3.75) 2.04 (1.67, 2.42)

Marital status
 Single and never married 29.32 (28.77, 29.86) 29.95 (29.59, 30.31) 29.45 (28.54, 30.35) 29.86 (29.32, 30.41) 29.64 (29.33, 29.96)

 Married or living as married 53.77 (52.92, 54.62) 51.83 (50.52, 53.14) 54.52 (53.47, 55.57) 53.15 (52.01, 54.30) 53.32 (52.77, 53.87)

 Divorced, separated, or widowed 14.27 (13.58, 14.96) 16.89 (15.56, 18.22) 13.69 (12.80, 14.58) 13.99 (13.25, 14.74) 14.71 (14.23, 15.18)

 Missing 2.64 (1.81, 3.47) 1.33 (0.85, 1.82) 2.34 (1.26, 3.41) 2.99 (1.99, 4.00) 2.33 (1.89, 2.77)

Adults in household
 1 18.20 (16.06, 20.34) 19.01 (17.17, 20.85) 20.76 (18.68, 22.83) 18.00 (16.35, 19.65) 18.99 (18.03, 19.96)

  ≥ 2 81.80 (79.66, 83.94) 80.99 (79.15, 82.83) 79.24 (77.17, 81.32) 82.00 (80.35, 83.65) 81.01 (80.04, 81.97)

Children in household
 0 62.84 (60.22, 65.46) 65.63 (63.39, 67.87) 63.78 (61.10, 66.47) 61.83 (59.36, 64.30) 63.51 (62.26, 64.77)

  ≥ 1 30.74 (28.22, 33.27) 28.35 (26.40, 30.30) 29.43 (27.18, 31.68) 32.15 (29.28, 35.03) 30.18 (28.96, 31.39)

 Missing 6.42 (5.09, 7.74) 6.02 (4.50, 7.54) 6.79 (5.04, 8.53) 6.01 (4.55, 7.48) 6.31 (5.55, 7.07)

Rural/urban residency
 Metropolitan 85.82 (84.02, 87.62) 86.30 (84.54, 88.06) 86.77 (84.95, 88.59) 87.76 (86.29, 89.23) 86.67 (85.81, 87.53)

 Non‑metro urban 12.26 (10.62, 13.89) 12.65 (10.84, 14.45) 11.89 (10.03, 13.74) 11.20 (9.76, 12.64) 11.99 (11.15, 12.84)
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to their own EHRs. Outside of viewing test results, use of 
EHR features was low with < 10% of class members using 
6 features and between 10 and 20% of members using 3 
features.

Class 5 and 6 members shared access to internet-
enabled devices but lacked access to EHRs. These 
classes made up 17.2% and 13.0% of US adults, respec-
tively. Except for online health information seeking, 
roughly ≤ 30% of class 5 members and ≤ 75% of class 
6 members engaged in web- and mobile device-based 

health behaviors. These behaviors ranged from partici-
pating in online health forums or support groups (1.3% 
and 13.1%) to seeking healthcare provider online (28.1% 
and 73.7%) among class 5 and 6 members. Noteworthy, 
class 6 had the second highest percentage of using smart 
mobile devices (66.8%) and wearables (30.7%) to track 
health and health goals and sharing of tracked data with 
healthcare providers (21.1%).

Classes 7 through 10 had complete access to internet-
enabled devices and EHRs. Combined, members of these 

a H5C3 limited to paper-and-pencil-only responses and their corresponding sample weights
b Includes American Indian, Alaska Native, Pacific Islander, Native Hawaiian, and multiracial adults

Table 1 (continued)

H5C1 (n = 3,287) H5C2 (n = 3,498) H5C3a (n = 3,349) H5C4 (n = 3,864) Total (N = 13,993)
% (95% CI) % (95% CI) % (95% CI) % (95% CI) % (95% CI)

 Non‑metro rural 1.93 (1.12, 2.74) 1.06 (0.62, 1.49) 1.34 (0.79, 1.90) 1.04 (0.62, 1.45) 1.34 (1.05, 1.63)

Census region
 Northeast 17.90 (17.85, 17.94) 17.81 (17.79, 17.84) 17.69 (17.55, 17.82) 17.54 (17.54, 17.54) 17.73 (17.70, 17.77)

 Midwest 21.11 (21.09, 21.13) 20.97 (20.91, 21.04) 20.94 (20.87, 21.00) 20.83 (20.83, 20.84) 20.96 (20.94, 20.98)

 South 37.54 (37.50, 37.57) 37.62 (37.54, 37.69) 37.73 (37.66, 37.80) 37.92 (37.91, 37.92) 37.70 (37.68, 37.73)

 West 23.46 (23.40, 23.52) 23.60 (23.56, 23.63) 23.65 (23.58, 23.72) 23.71 (23.70, 23.71) 23.60 (23.58, 23.63)

Health insurance coverage
 Yes 90.62 (90.13, 91.10) 89.89 (89.28, 90.51) 90.08 (89.19, 90.97) 89.78 (89.13, 90.44) 90.09 (89.75, 90.43)

 No 8.17 (8.14, 8.19) 8.33 (8.21, 8.44) 8.27 (8.18, 8.37) 8.88 (8.73, 9.03) 8.41 (8.36, 8.47)

 Missing 1.22 (0.74, 1.70) 1.78 (1.18, 2.38) 1.65 (0.74, 2.56) 1.34 (0.68, 1.99) 1.49 (1.15, 1.84)

Regular healthcare provider
 Yes 64.67 (62.09, 67.24) 64.47 (61.90, 67.04) 62.83 (59.68, 65.98) 61.39 (58.97, 63.81) 63.33 (61.98, 64.68)

 No 34.29 (31.67, 36.91) 33.86 (31.29, 36.43) 35.02 (31.83, 38.22) 37.22 (34.89, 39.55) 35.11 (33.76, 36.46)

 Missing 1.05 (0.60, 1.50) 1.67 (0.76, 2.58) 2.15 (1.07, 3.22) 1.38 (0.94, 1.83) 1.56 (1.18, 1.95)

Healthcare visit in past year
 Yes 81.75 (79.49, 84.01) 79.98 (77.32, 82.64) 82.57 (80.03, 85.12) 82.65 (80.94, 84.35) 81.74 (80.58, 82.90)

 No 17.00 (14.77, 19.22) 18.93 (16.42, 21.44) 16.62 (14.06, 19.18) 16.74 (14.98, 18.50) 17.32 (16.18, 18.46)

 Missing 1.26 (0.80, 1.72) 1.09 (0.29, 1.89) 0.81 (0.22, 1.40) 0.61 (0.37, 0.86) 0.94 (0.66, 1.22)

General health
 Excellent, very good, good 82.23 (79.79, 84.68) 84.69 (82.84, 86.54) 83.36 (80.94, 85.77) 85.28 (83.54, 87.02) 83.90 (82.83, 84.96)

 Fair or poor 16.86 (14.50, 19.21) 14.71 (12.84, 16.58) 15.05 (12.81, 17.30) 14.01 (12.29, 15.72) 15.15 (14.12, 16.18)

 Missing 0.91 (0.47, 1.36) 0.60 (0.35, 0.85) 1.59 (0.71, 2.47) 0.71 (0.37, 1.06) 0.96 (0.69, 1.22)

Chronic health conditions
 0 47.53 (44.94, 50.12) 48.71 (46.24, 51.19) 48.66 (45.95, 51.38) 46.51 (44.61, 48.41) 47.85 (46.63, 49.07)

 1 28.05 (25.47, 30.62) 27.14 (24.91, 29.38) 27.23 (24.70, 29.75) 28.76 (26.48, 31.05) 27.80 (26.59, 29.00)

  ≥ 2 21.23 (19.51, 22.94) 20.83 (19.09, 22.58) 20.51 (18.50, 22.51) 21.47 (19.65, 23.30) 21.01 (20.10, 21.93)

 Missing 3.20 (2.35, 4.05) 3.31 (2.39, 4.23) 3.60 (2.63, 4.58) 3.25 (2.40, 4.10) 3.34 (2.89, 3.79)

Depression or anxiety disorder
 Yes 22.74 (20.32, 25.16) 23.69 (21.08, 26.30) 22.85 (20.23, 25.46) 24.07 (21.97, 26.18) 23.34 (22.12, 24.56)

 No 75.50 (73.10, 77.90) 74.23 (71.43, 77.02) 75.15 (72.42, 77.88) 74.93 (72.79, 77.08) 74.95 (73.69, 76.22)

 Missing 1.76 (1.08, 2.44) 2.08 (1.29, 2.88) 2.00 (1.32, 2.68) 0.99 (0.58, 1.40) 1.71 (1.38, 2.03)

Weekly physical activity 
  < 150 minutes 57.54 (54.61, 60.47) 64.20 (61.55, 66.84) 62.01 (58.98, 65.03) 59.30 (56.25, 62.36) 60.76 (59.30, 62.22)

  ≥ 150 minutes 41.11 (38.28, 43.94) 32.81 (30.26, 35.36) 34.53 (31.84, 37.22) 37.24 (34.47, 40.00) 36.41 (35.06, 37.77)

 Missing 1.35 (0.92, 1.79) 2.99 (2.23, 3.76) 3.46 (2.34, 4.59) 3.46 (2.12, 4.81) 2.83 (2.33, 3.32)



Page 6 of 14Hegeman et al. BMC Digital Health            (2024) 2:42 

classes made up 48.7% of US adults. One notable dif-
ference among them is the sparse use of EHRs among 
members of classes 7 and 8 where only 12% logged in to 
their online EHR in the past year and use of any EHR fea-
tures was almost nonexistent. Members of other classes 
with EHR access had notably more utilization: 43.5% of 
class 4 members and 100% of classes 9 and 10 members 
had logged in to their own EHR. Of 10 EHR features 
examined, viewing test results and communicating with 
healthcare providers were the most used across classes 4, 
9, and 10. Additionally, > 25% of class 9 members used 5 
EHR features and > 50% of class 10 members used 6 EHR 
features.

Classes 7 through 10 also differed in the percentage 
of their members who engaged in health uses of digital 
technologies. Class 7 members exhibited low use; < 30% 
of its members engaged in any behavior (except online 
health information seeking). Classes 8 and 9 members 
exhibited moderate-to-high use of most digital health 
technologies. A higher percentage of class 8 members 
used mobile technologies than class 9 members (e.g., 
57.8% of class 8 members used smart mobile devices to 
make medical treatment decisions vs. 32.9% of class 9). 
However, the two classes were nearly identical in other 
web-based health behaviors (e.g., 49.0% of class 8 mem-
bers tracked healthcare costs online vs. 49.6% of class 
9). Making up 13.6% of US adults, class 10 consisted of 
super users of all 32 health behaviors examined. Between 

50 and 80% of class members engaged in 12 behaviors 
and > 80% engaged in 10 behaviors. Furthermore, class 10 
members engaged in uncommon or nonexistent behav-
iors among members of other classes (e.g., sharing health 
information on social networking sites (35.3%), health 
tracking using wearables (40.0%)).

Associations between sociodemographic characteristics, 
health factors, and class membership (Aim 2)
Age and education were associated with class member-
ship (Table 3). For example, adults aged 50–64 had 19.8 
times the odds and those aged 65 + had 199.1 times the 
odds of class 1 (vs. class 10) membership compared 
to those aged 18–34. Adults with less than high school 
education had 690.9 times the odds, those with high 
school education had 29.2 times the odds, and those with 
some college, vocational, or technical training had 5.7 
times the odds of class 1 (vs. class 10) membership com-
pared to college graduates and those with postgraduate 
degrees. Sex was also associated with class membership 
where females had lower odds of belonging to classes 1 
through 6 (vs. class 10) than males (aORs ranged from 
0.29 for class 3 to 0.56 for class 2). Non-Hispanic Asian 
(aOR = 2.11) and Hispanic (aOR = 2.68) adults had 
greater odds of belonging to class 2 (vs. class 10) than 
non-Hispanic White adults. Others correlates of class 
membership included marital status and rural/urban 
residency, whereas sexual orientation, census regions, 

Fig. 1 Conditional probabilities of digital technology health behavior indicator variables for the 10‑class model. Note: Behaviors 1 through 13 are 
web‑based, 14 through 20 are mobile and wearable devices based, and 21 through 32 are EHR‑based
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and the numbers of adults and children in the household 
were largely not associated with class membership.

Adults who reported not having a regular healthcare 
provider or not visiting a provider in the past year had 
greater odds of membership in classes 1 through 3 or 5 
(vs. class 10) than adults who reported having a regu-
lar provider or having visited one in the past year. For 
example, adults who reported not having a regular health 
care provider (aOR = 2.69) and not visiting one in the 
past year (aOR = 6.65) had greater odds of belonging to 
class 1 (vs. class 10) than those reporting having or vis-
iting a healthcare provider. The presence of chronic dis-
eases was also associated with class membership. Adults 
with ≥ 2 chronic diseases had lower odds of belonging to 
all classes (vs. class 10) than those with no chronic con-
ditions (aORs ranged from 0.25 for class 3 to 0.48 for 
class 4). Additionally, adults who reported exercising 
150 + minutes/week had roughly half the odds of belong-
ing to classes 1, 2, 4, or 5 (vs. class 10) than those who 
reported exercising < 150 min/week. Health insurance 

status and self-reported general health were largely not 
associated with class membership.

Discussion
We identified ten unique digital technology access and 
health use patterns among a nationally representative 
sample of US adults. Roughly 50% of US adults had uni-
versal access to the internet and internet-enabled devices, 
smart mobile devices, and to their EHRs. The remaining 
half of US adults belonged to classes that lacked access 
to 1 + of these digital technologies. Within classes, the 
estimated proportions of members engaging in vari-
ous health behaviors ranged from small to large. Dis-
parate access to and health use of digital technologies 
was observed primarily by birth sex, age, educational 
attainment, and health factors. Specifically, digital tech-
nologies access and health use were lower among male, 
less educated, and older adults, while the relationship 
between race/ethnicity and access and use was weaker 
by comparison. The health factors most associated with 
membership of classes with lesser digital technologies 

Table 2 Model fit information and selection criteria for latent class models with 1 to 20 classes

AIC  Akaike information criterion, BIC Bayesian information criterion, CAIC Consistent AIC, SABIC Sample size adjusted BIC, VLMR-LR  Vuong-Lo-Mendell-Rubin adjusted 
likelihood ratio (of k class model to k-1 class model, hence none for 1 class model)
* All likelihood ratio tests have p < 0.001, indicating statistically significant improvement of each k-class model compared to previous k-1 class model

Fit for latent class models without covariates

Bold indicates selected model

Classes # Parameters Log-likelihood Entropy AIC CAIC BIC SABIC VLMR-LR

Desideratum: ‑ ‑  > 0.8 Lowest value Lowest value Lowest value Lowest value Greater magnitude indi‑
cates greater improvement 
over the previous  model*

1 64 ‑299,539 ‑ 599,206 599,753 599,689 599,485 ‑

2 129 ‑214,242 0.99 428,742 429,845 429,716 429,306 164,838

3 194 ‑172,165 0.99 344,718 346,376 346,182 345,566 81,315

4 259 ‑159,902 0.96 320,321 322,535 322,276 321,453 23,700

5 324 ‑154,752 0.96 310,152 312,921 312,597 311,567 9952

6 389 ‑149,695 0.97 300,168 303,493 303,104 301,868 9772

7 454 ‑146,777 0.97 294,461 298,341 297,887 296,445 5640

8 519 ‑143,929 0.94 288,896 293,332 292,813 291,163 5503

9 584 ‑141,397 0.93 283,962 288,953 288,369 286,513 4893

10 649 -139,854 0.92 281,007 286,553 285,904 283,842 2981
11 714 ‑139,262 0.91 279,952 286,054 285,340 283,071 1145

12 779 ‑138,713 0.90 278,984 285,641 284,862 282,387 1061

13 844 ‑138,198 0.89 278,085 285,298 284,454 281,772 994

14 909 ‑137,722 0.88 277,262 285,031 284,122 281,233 920

15 974 ‑137,292 0.88 276,533 284,857 283,883 280,788 831

16 1039 ‑136,895 0.88 275,867 284,747 283,708 280,406 769

17 1104 ‑136,561 0.88 275,330 284,765 283,661 280,152 645

18 1169 ‑136,233 0.88 274,805 284,796 283,627 279,912 633

19 1234 ‑135,978 0.87 274,423 284,969 283,735 279,814 494

20 1299 ‑135,749 0.87 274,096 285,198 283,899 279,771 442
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Table 3 Multinomial logistic regression of sociodemographics and health factors onto class membership, (n = 10,960, class 10 is 
reference class)

Covariate Class 1 aOR 
(95% CI)

Class 2 aOR 
(95% CI)

Class 3 aOR 
(95% CI)

Class 4 aOR 
(95% CI)

Class 5 aOR 
(95% CI)

Class 6 aOR 
(95% CI)

Class 7 aOR 
(95% CI)

Class 8 aOR 
(95% CI)

Class 9 aOR 
(95% CI)

Sex (ref: Male)

 Female 0.34 [0.24, 
0.49]

0.56 [0.38, 
0.84]

0.29 [0.15, 
0.54]

0.47 [0.29, 
0.76]

0.36 [0.26, 
0.52]

0.54 [0.38, 
0.76]

0.55 [0.29, 
1.03]

0.88 [0.48, 
1.62]

0.80 [0.53, 
1.19]

Age (ref: 18–34)

 35–49 3.27 [0.85, 
12.53]

2.39 [1.06, 
5.42]

4.81 [0.80, 
29.00]

3.18 [0.59, 
17.09]

1.24 [0.68, 
2.30]

0.72 [0.40, 
1.31]

1.20 [0.22, 
6.49]

0.89 [0.26, 
3.05]

1.43 [0.66, 
3.09]

 50–64 19.81 [5.50, 
71.29]

6.23 [2.82, 
13.77]

32.14 [6.24, 
165.59]

6.71 [1.76, 
25.61]

2.28 [1.34, 
3.90]

1.26 [0.69, 
2.32]

3.11 [1.04, 
9.28]

1.22 [0.43, 
3.44]

2.91 [1.52, 
5.57]

  ≥ 65 199.14 
[55.94, 
708.96]

20.68 [9.31, 
45.92]

114.21 
[21.47, 
607.36]

43.90 
[10.71, 
179.97]

4.47 [2.49, 
8.02]

0.90 [0.40, 
2.06]

6.29 [2.06, 
19.25]

0.98 [0.47, 
2.06]

4.06 [2.03, 
8.10]

Race/ethnicity (ref: Non‑Hispanic White)

 Non‑His‑
panic Asian

1.46 [0.41, 
5.20]

2.11 [1.03, 
4.30]

0.42 [0.06, 
2.75]

0.12 [< 0.01, 
11.11]

0.76 [0.34, 
1.69]

0.99 [0.48, 
2.04]

0.41 [0.12, 
1.36]

0.47 [0.19, 
1.17]

0.84 [0.42, 
1.66]

 Non‑His‑
panic Black

1.04 [0.57, 
1.90]

1.53 [0.84, 
2.77]

0.78 [0.22, 
2.72]

0.60 [0.12, 
2.99]

0.67 [0.27, 
1.70]

1.27 [0.61, 
2.66]

0.57 [0.18, 
1.79]

1.14 [0.38, 
3.40]

0.52 [0.28, 
0.93]

 Hispanic 1.56 [0.83, 
2.94]

2.68 [1.63, 
4.41]

0.51 [0.23, 
1.15]

1.18 [0.58, 
2.39]

1.08 [0.68, 
1.72]

1.43 [0.89, 
2.29]

0.78 [0.33, 
1.82]

1.23 [0.48, 
3.10]

0.66 [0.38, 
1.14]

 Non‑His‑
panic  Othera

0.93 [0.24, 
3.70]

0.67 [0.18, 
2.52]

0.17 [0.01, 
2.02]

0.73 [0.13, 
4.23]

0.95 [0.30, 
3.00]

0.72 [0.23, 
2.23]

0.27 [0.03, 
2.70]

0.92 [0.25, 
3.45]

0.66 [0.23, 
1.91]

Sexual orientation (ref: Heterosexual)

 Non‑heter‑
osexual

0.45 [0.14, 
1.45]

0.21 [0.05, 
0.86]

0.12 [0.02, 
0.63]

0.84 [0.26, 
2.73]

0.40 [0.16, 
1.02]

0.51 [0.24, 
1.07]

0.16 [0.03, 
0.84]

0.48 [0.18, 
1.27]

0.65 [0.28, 
1.49]

Education (ref: College graduate or postgraduate)

  < High 
school

690.90 
[50.24, 
9501.58]

118.27 
[8.17, 
1713.04]

138.93 
[8.19, 
2356.88]

48.38 [2.65, 
884.08]

39.85 [3.20, 
495.77]

7.39 [0.50, 
110.12]

45.70 [2.84, 
735.57]

3.21 [0.16, 
63.43]

9.07 [0.53, 
156.18]

 High school 
graduate

29.25 
[16.08, 
53.21]

10.51 [6.23, 
17.73]

7.08 [3.70, 
13.54]

4.57 [2.30, 
9.06]

4.49 [2.74, 
7.36]

1.52 [0.87, 
2.67]

4.91 [1.92, 
12.56]

1.24 [0.34, 
4.47]

1.25 [0.72, 
2.14]

 Some 
college, 
vocational, 
or technical 
training

5.73 [3.30, 
9.95]

3.13 [2.01, 
4.88]

3.60 [2.15, 
6.02]

1.99 [1.02, 
3.88]

2.95 [1.92, 
4.52]

1.52 [1.00, 
2.29]

2.80 [1.07, 
7.35]

1.56 [0.91, 
2.68]

1.41 [0.86, 
2.34]

Marital status (ref: Single and never married)

 Married 
or living 
as married

0.24 [0.11, 
0.52]

0.52 [0.25, 
1.08]

0.16 [0.07, 
0.38]

0.25 [0.10, 
0.61]

0.51 [0.26, 
0.97]

0.75 [0.40, 
1.40]

0.47 [0.15, 
1.47]

1.34 [0.39, 
4.65]

1.11 [0.39, 
3.14]

 Divorced, 
separated, 
or widowed

0.81 [0.44, 
1.50]

1.00 [0.54, 
1.86]

0.64 [0.24, 
1.66]

0.45 [0.24, 
0.87]

1.10 [0.61, 
2.01]

1.00 [0.53, 
1.90]

0.93 [0.27, 
3.23]

1.46 [0.34, 
6.16]

1.17 [0.53, 
2.57]

Adults in household (ref: 1)

  ≥ 2 0.48 [0.24, 
0.95]

0.53 [0.26, 
1.08]

0.58 [0.26, 
1.27]

0.70 [0.30, 
1.64]

0.76 [0.41, 
1.40]

1.00 [0.52, 
1.92]

1.19 [0.52, 
2.71]

0.68 [0.32, 
1.44]

0.67 [0.29, 
1.55]

Children in household (ref: 0)

  ≥ 1 0.62 [0.34, 
1.13]

0.90 [0.55, 
1.49]

0.61 [0.27, 
1.40]

0.29 [0.10, 
0.89]

0.90 [0.61, 
1.34]

1.10 [0.78, 
1.56]

0.93 [0.56, 
1.56]

1.05 [0.64, 
1.72]

0.98 [0.71, 
1.36]

Rural/urban residency (ref: Metropolitan)

 Non‑metro 
urban

2.53 [1.43, 
4.46]

1.97 [1.12, 
3.47]

1.32 [0.61, 
2.86]

1.37 [0.72, 
2.61]

2.21 [1.29, 
3.76]

1.44 [0.79, 
2.62]

2.13 [1.12, 
4.07]

1.32 [0.56, 
3.11]

1.28 [0.75, 
2.18]

 Non‑metro 
rural

4.72 [1.26, 
17.70]

1.14 [0.26, 
4.95]

2.42 [0.59, 
9.91]

1.48 [0.28, 
7.83]

1.61 [0.55, 
4.77]

1.82 [0.51, 
6.47]

1.06 [0.31, 
3.64]

1.26 [0.32, 
4.98]

0.68 [0.21, 
2.24]
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access and health use were not having a regular health-
care provider, not visiting a provider in the past year, 
and not having any chronic diseases. These results 
have important implications. From health education to 
chronic disease management and behavior change, ben-
efits of digital technologies use on health outcomes are 
well documented [4, 8, 11, 20]. Taking a holistic approach 
to identifying groups with common digital technologies 
access and health use patterns is critical for efforts aimed 
at improving access to digital technologies and increas-
ing their health use among US adults to maximize indi-
vidual- and population-level health benefits.

Our results make evident the lack of access to digital 
technologies among US adults. First, ~ 50% of US adults 
lacked EHR access (classes 1 through 3, 5, and 6) despite 
an accelerated rate of EHR adoption attributed, in part, 
to policies that incentivized adoption and meaningful 
use of EHRs [54]. Second, ~ 13% lacked access to both 

smartphones and tablets (classes 1, 3, and 4), which aligns 
with national data on smartphone adoption rates [23]. 
Wearable device access was highest among class 10 mem-
bers (52.5%), whereas wearables access was < 13% among 
members of six classes that made up half of US adults 
(classes 1 through 5 and 7). Third, ~ 16% of US adults did 
not utilize the internet (classes 1 and 2), despite class 2 
members having access to internet-capable devices (e.g., 
smartphones, tablets). By default, health uses of digital 
technologies were nonexistent in classes missing access 
to requisite technologies, eliminating any possible ben-
efits associated with their use. Thus, it is essential to 
monitor national targets (e.g., HealthyPeople 2030) for 
increasing access to digital technologies [55] and expand 
access to underserved populations through programs 
such as phone and internet service payment assistance 
and alternative third-party personal health record apps 
[56, 57].

Table 3 (continued)

Covariate Class 1 aOR 
(95% CI)

Class 2 aOR 
(95% CI)

Class 3 aOR 
(95% CI)

Class 4 aOR 
(95% CI)

Class 5 aOR 
(95% CI)

Class 6 aOR 
(95% CI)

Class 7 aOR 
(95% CI)

Class 8 aOR 
(95% CI)

Class 9 aOR 
(95% CI)

Census region (ref: Northeast)

 Midwest 0.85 [0.45, 
1.61]

0.99 [0.55, 
1.78]

0.88 [0.40, 
1.93]

0.75 [0.32, 
1.76]

0.82 [0.49, 
1.38]

0.61 [0.36, 
1.03]

0.77 [0.37, 
1.59]

0.61 [0.24, 
1.51]

0.80 [0.49, 
1.32]

 South 0.69 [0.39, 
1.23]

0.87 [0.51, 
1.47]

0.57 [0.29, 
1.13]

0.69 [0.31, 
1.56]

0.72 [0.40, 
1.31]

1.06 [0.65, 
1.75]

0.65 [0.39, 
1.09]

0.89 [0.46, 
1.70]

0.91 [0.51, 
1.62]

 West 0.48 [0.26, 
0.86]

0.66 [0.39, 
1.11]

0.38 [0.18, 
0.83]

0.86 [0.40, 
1.81]

0.53 [0.31, 
0.91]

0.86 [0.53, 
1.39]

0.44 [0.24, 
0.80]

0.88 [0.41, 
1.91]

0.76 [0.46, 
1.25]

Health insurance coverage (ref: Yes)

 No 2.06 [0.60, 
7.11]

2.56 [0.83, 
7.95]

2.93 [0.54, 
15.98]

2.40 [0.34, 
16.71]

1.93 [0.61, 
6.16]

1.91 [0.52, 
7.05]

1.32 [0.12, 
14.04]

1.41 [0.23, 
8.59]

0.74 [0.16, 
3.38]

Regular healthcare provider (ref: Yes)

 No 2.69 [1.54, 
4.71]

3.23 [1.85, 
5.63]

2.93 [1.41, 
6.09]

1.36 [0.59, 
3.17]

4.54 [2.87, 
7.18]

2.84 [1.71, 
4.72]

2.47 [1.32, 
4.62]

2.73 [1.59, 
4.67]

1.57 [0.85, 
2.92]

Healthcare visit in past year (ref: Yes)

 No 6.65 [3.10, 
14.23]

4.20 [2.05, 
8.57]

4.68 [1.68, 
13.09]

1.25 [0.35, 
4.44]

4.83 [2.49, 
9.36]

2.05 [0.95, 
4.43]

2.23 [0.51, 
9.68]

2.42 [0.65, 
9.01]

1.13 [0.47, 
2.76]

General health (ref: Excellent, very good, or good)

 Fair or Poor 2.90 [1.72, 
4.91]

1.42 [0.84, 
2.41]

1.95 [0.87, 
4.40]

2.08 [0.93, 
4.65]

1.29 [0.78, 
2.12]

1.17 [0.72, 
1.88]

1.13 [0.40, 
3.18]

1.29 [0.52, 
3.20]

1.01 [0.60, 
1.70]

Chronic health conditions (ref: 0)

 1 0.44 [0.25, 
0.77]

0.51 [0.30, 
0.86]

0.46 [0.23, 
0.90]

0.50 [0.23, 
1.08]

0.46 [0.27, 
0.77]

0.50 [0.32, 
0.79]

0.49 [0.25, 
0.95]

0.63 [0.34, 
1.15]

0.60 [0.35, 
1.02]

  ≥ 2 0.39 [0.23, 
0.67]

0.43 [0.25, 
0.73]

0.25 [0.12, 
0.49]

0.48 [0.24, 
0.97]

0.31 [0.18, 
0.54]

0.42 [0.26, 
0.69]

0.40 [0.24, 
0.68]

0.42 [0.21, 
0.84]

0.45 [0.28, 
0.74]

Depression or anxiety disorder (ref: No)

 Yes 0.35 [0.20, 
0.60]

0.57 [0.32, 
1.03]

0.94 [0.44, 
2.02]

0.41 [0.22, 
0.79]

0.46 [0.29, 
0.74]

0.78 [0.52, 
1.16]

0.57 [0.31, 
1.06]

0.74 [0.40, 
1.35]

0.61 [0.36, 
1.05]

Weekly physical activity (ref: < 150 minutes)

  ≥ 150 
minutes

0.50 [0.32, 
0.78]

0.55 [0.36, 
0.85]

0.75 [0.45, 
1.26]

0.42 [0.26, 
0.70]

0.54 [0.35, 
0.85]

0.80 [0.53, 
1.22]

0.67 [0.31, 
1.45]

0.84 [0.37, 
1.87]

0.64 [0.41, 
1.00]

aOR  adjusted odds ratio, CI confidence intervals

Bold adjusted odds ratios and confidence intervals do not include 1 
a Includes American Indian, Alaska Native, Pacific Islander, Native Hawaiian, and multiracial adults
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Digital technologies access and health use patterns 
are constantly changing. Future studies should replicate 
the current work to examine the evolution in the classes 
identified here over time. For example, the digitally iso-
lated class 1 could disappear as trends in adoption of 
digital technologies continue or as the aging members 
of this class die out. Potential future scenarios include 
the emergence of classes that reflect disparate access to 
newer technologies (e.g., smart home assistants) as other 
technologies (e.g., wearables) become mainstream [58]. 
Future research should also document access-driven dis-
parities in health outcomes among adults who belong 
to classes with no/limited access to digital technologies 
and whether such disparities vary by individual histories 
of access (e.g., duration with uninterrupted access rather 
than by estimates of access at a single time point). Stud-
ies should also examine whether there are advantages to 
having access to multiple technologies that ostensibly 
facilitate the same health behavior. For example, given 
that mobile texting, email, and patient portals may all be 
used for patient-provider communication, does commu-
nication frequency and associated health outcome (e.g., 
patient satisfaction) differ depending on the type or num-
ber of technologies available to the patient?

Across classes, percentages of US adults using digital 
technologies for health varied. Consistent with previ-
ously published literature, seeking health information 
online was common across all web-integrated classes, 
and – of the queried EHR features – adults commonly 
viewed test results and communicated with their health-
care providers [2, 59]. On digital technologies health use, 
several observations are noteworthy. First, while health 
uses of digital technologies are associated with positive 
health outcomes, evidence of positive outcomes is not 
definitive and unintended outcomes exist. For example, 
online health information seeking has been associated 
with unintended, often negative, outcomes (e.g., health 
misinformation) [60]. Similarly, benefits of patient por-
tals use on clinical health outcomes is inconclusive [61, 
62]. This introduces complexity in determining which 
technologies are potentially beneficial to health and the 
desired proportions of US adults engaging with digi-
tal health technologies, which potentially explains why 
national initiatives set goals solely for increasing access to 
digital technologies [55].

Our results suggest the need to disentangle lack of 
access from nonuse, as the lines between them are often 
blurred. For example, limited use of EHRs can be attrib-
uted to a lack of access among people without health 
insurance or a regular healthcare provider (rather than 
an unwillingness to adopt them). Alternatively, EHR non-
use can be attributed to lack of (perceived) need, lack 
of awareness, and poor usability, among other factors 

[63]. Identifying factors associated with nonuse is criti-
cal to employing appropriate approaches to intervene on 
modifiable factors to reduce digital health disparities. 
Interventions should also target various interdependent 
factors commonly associated with use of digital technol-
ogies including individual predispositions (e.g., mistrust, 
privacy concerns), skills (e.g., limited digital literacy), 
and technology-related factors (e.g., poor usability) [28, 
29, 64–66]. Finally, although our analysis was limited 
to binary measures of health behaviors, frequency and 
duration of use can vary. Thus, it is important to con-
sider how health outcomes may relate to the frequency of 
health behaviors and identify classes of adults based on 
levels of health use within and across digital technologies 
and health outcomes among adults who belong to these 
classes.

Our results feature a subset of US adults who use digi-
tal technologies in relative isolation from the traditional 
healthcare system, whether by choice (i.e., classes 7 
and 8) or because they lacked access to their EHRs (i.e., 
classes 1 through 3, 5, and 6). Members of these classes 
utilized general web-based tools serving the same pur-
pose as EHR features (e.g., communicating with provider, 
requesting medication refills), which illustrates the utility 
of these tools outside of patient portals and may explain 
the lag in EHR use among those with EHR access. Future 
research should examine whether the use of compara-
ble non-EHRs platforms produces equivalent benefits to 
EHR use.

Our results show correlates common across disparate 
access and health use, while others were unique to either 
access or use. Older adults and individuals with less than 
a college degree had higher odds of belonging to classes 
lacking digital technologies access and to classes with 
fewer members engaging in health behaviors. Minority 
status, specifically as Hispanic or Asian American, was 
associated with belonging to the mobile-dependent class, 
consistent with available evidence [23]. Other demo-
graphics like being male and single were associated with 
belonging to classes with gaps in access, but were not 
associated with belonging to classes with limited health 
uses among those with access. Access to digital technolo-
gies (and skills needed for their use) is an established 
social determinant of health [67, 68]. As digital technolo-
gies have become central to public health and healthcare, 
expanding access to digital technologies is a pre-requisite 
to engaging in various health behaviors from seeking 
health information online to interacting with the health-
care system electronically. Initiatives to provide Wi-Fi 
access during the COVID-19 pandemic could serve as a 
template for such efforts [69]. These efforts are critical 
to reduce existing disparities in access to healthcare and 
to preempt potential disparities emanating from digital 
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health inequities [36, 66]. Furthermore, it is important to 
ensure the reliability and consistency of access especially 
as racial/ethnic minorities have come to rely exclusively 
on mobile devices for internet access [70, 71]. Finally, as 
evident in our results, single characteristics can be asso-
ciated with membership of multiple classes showing near 
opposite access and/or use patterns. For example, people 
50 + years old had higher odds of belonging to limited 
access/use classes (e.g., class 1) and unlimited access/
moderate use (e.g., class 9) vs. class 10. This calls for 
examining sociodemographic profiles of class members 
(e.g., age and education) rather than focusing on single 
characteristics.

Strengths of this study include use of nationally rep-
resentative data of US adults; our holistic approach to 
examine existing patterns of access to digital technolo-
gies and health use based on 32 indicators among US 
adults; and the use of an analytic approach that allows 
for natural classes to emerge based on commonalities in 
digital technologies access and health uses, rather than 
forcing the data into a priori defined patterns. Limita-
tions include inconsistencies in question availability, 
wording, and skip-logic patterns across years. For exam-
ple, questions on health monitors inconsistently included 
examples of wearables (e.g., Fitbit), non-wearables (e.g., 
glucometer), or both. Access questions were seldom pre-
cise or comprehensive. For example, participants were 
asked whether they used broadband, a cellular data plan, 
or Wi-Fi to connect to the internet, but did not specify if 
access was at home (vs. public spaces). Thus, we used the 
question about whether the participant uses the internet 
generally as a proxy for internet access. Other limitations 
include the potential for different interpretations of ques-
tions, recall error, and social desirability biases typical of 
self-reported survey data. Accordingly, we might have 
misclassified people who might have had access to requi-
site technologies but could not or failed to report it. Some 
questions had specific time frames (e.g., past 12 months) 
while others did not. The labelling of classes (e.g., mobile-
dependent) should be taken with caution because of 
these limitations. Many health behaviors examined here 
could be performed using multiple platforms. For exam-
ple, sharing health information on social networking sites 
could be done on a website or smartphone app. How-
ever, our classification of health behaviors as web-based, 
mobile-based, or EHRs-based followed the question 
wording. Specifically, behaviors were classified as mobile-
based when questions referenced smart devices or mobile 
features (e.g., texting) and as EHRs-based when ques-
tions referenced medical records, otherwise behaviors 
were classified as web-based. We could not use several 
covariates inconsistently captured over time (e.g., English 

proficiency). We excluded annual household income as a 
covariate due to high missingness. Finally, the exclusion 
of 22% of the sample in the multinomial regression could 
influence the results. However, we believe that influ-
ence to be minimal since missingness was 7.76% at most 
and was < 4% for most variables. Additionally, we ruled 
out a multiple imputations approach since Mplus could 
not accommodate both sampling weights and multiple 
imputations simultaneously. Accordingly, we prioritized 
the national representativeness of our confidence inter-
val estimates via the use of replicate weights over mul-
tiple imputations that would have addressed covariate 
missingness.

Conclusion
Access and use are indispensable to reaping health ben-
efits associated with digital technologies. Seen as tools 
to supplement traditional health and medical care, 
expanding access to and health use of digital technolo-
gies has been cornerstone to national health initiatives. 
We showed classes of US adults with limited access to 
1 + technologies and with little to no use of such technol-
ogies for health purposes. Individuals with high odds of 
belonging to these classes were particularly older and less 
educated. Patterns of digital technology access and use 
can shape policies and interventions targeting subpopu-
lations among which digital health technologies are inac-
cessible and/or underutilized.
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