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Abstract 

Background  Personalizing lifestyle interventions by self-monitoring with wearable sensors can enhance adherence 
and improve intervention outcomes. It is unknown whether measures from a wearable device can detect lifestyle 
changes during an intervention. Therefore, the association between individual weight loss with continuous measures 
from a Fitbit was examined during a personalized SLIMMER combined lifestyle intervention.

Methods  A retrospective analysis was performed to assess the association of various Fitbit (Charge 4) meas-
ures and self-monitoring behaviors on achieved weight loss during a personalized version of SLIMMER. In this 
study, 61 people with overweight or obesity were included and were followed one month before the start and six 
months during a personalized SLIMMER program. Personalization included ambulatory monitoring with an activity 
tracker and smart scale. Fitbit data was pre-processed to ensure sufficient day- and night- wear-time. Body weight 
was assessed at the study start and end. Physical activity (PA), heart rate, and sleep were selected from Fitbit output. 
Their mean change over time before and after the start of the intervention were evaluated with linear mixed effects 
models and their Spearman correlation with weight loss was investigated.

Findings  After pre-processing, 32 subjects with sufficient Fitbit data had 4.9% [1.7–7.7%] weight loss at the end 
of the program. Step count, moderate PA and vigorous PA increased before the intervention (1667 [0 – 3511] 
steps/day, p < 0.001, 38.6 [0.0 – 84.9] minutes/week, p < 0.05 65.6 [0.0 – 156] minutes/week, p < 0.05, respectively), 
but declined during the intervention (-465 [-1016 – 107] steps/day, p < 0.05, -28.6 [-40.4 – -16.1] minutes/week, 
p < 0.001, -22.0 [-38.2 – -4.2] minutes/week p < 0.05 respectively). Estimated mean resting heart rate (RHR) correlated 
moderately with weight loss before (ρ = -0.46, p < 0.05) and during the intervention (ρ = -0.53, p < 0.01). Weight loss 
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correlated with the average number of at home weight measurements before (ρ = 0.37, p < 0.05) and during the inter-
vention (ρ = 0.41, p < 0.05).

Conclusions  This study shows that participants increased physically active behavior before the lifestyle interven-
tion, but this improvement was not maintained during the intervention. RHR is negatively correlated with weight loss 
before and during the lifestyle intervention and therefore suggesting that participants with a better physiological 
health status achieved more weight loss.

Keywords  SLIMMER, Combined lifestyle intervention, Fitbit Charge 4, Weight loss, Resting heart rate, Physical activity, 
Wearable sensors, Fitness trackers, Self-monitoring, Obesity, Overweight, Lifestyle behavior

Introduction
Overweight and obesity are well-known risk factors for 
development of type 2 diabetes (T2D) and other chronic 
conditions. Overweight accounts for 2.5 billion adults 
worldwide, of which 890 million are adults with obesity 
and these numbers grow worldwide [1]. The etiology of 
obesity is complex and includes socio-cultural, behavio-
ral, treatment side-effects, hormonal, mental and genetic 
factors [2]. Lifestyle related causes for weight gain include 
hypercaloric intake, lack of exercise, disturbed sleep, and 
alcohol abuse [2–5]. These lifestyle factors are intercon-
nected, as sleep quality for example influences dietary 
and activity habits and vice versa [6, 7]. This shows the 
importance to gain a better understanding of the inter-
connectedness of diet, physical activity, and sleep at the 
individual level when aiming for long-term risk reduction 
for T2D and other chronic conditions.

Lifestyle improvement can prevent or delay the 
progression of T2D. Previous studies have revealed 
that lifestyle interventions combining diet and physi-
cal activity (PA) modifications with behavior change 
reduce the incidence of T2D with 58% among high-risk 
individuals over a three year period [8]. These effects 
persist long-term, with lower T2D incidence in the 
lifestyle intervention group compared to controls after 
half a decade [9]. A study in the Netherlands on dia-
betes prevention achieved similar results on T2D inci-
dence reduction after three years (SLIM intervention) 
[10]. Based on these outcomes a combined lifestyle 
intervention program was developed to be employed 
in primary care (SLIMMER intervention [11]), achiev-
ing similar effects in terms of weight loss of around 3% 
after 12 and 18 months [11]. Currently, the SLIMMER 
combined lifestyle intervention (CLI) is a reimbursed 
two-year program in the Netherlands where adults 
who are overweight (BMI 25–30 kg/m2) and have car-
diometabolic risk factors or who are obese (BMI > 
= 30 kg/m2) are being supported by health care profes-
sionals in primary care to improve their lifestyle with 
respect to dietary intake, physical activity, and behav-
ior change. The program shows modest improvement 
in body weight (3%), physical activity, and diet, which 

are sustained at 18 months [11]. However, 10% weight 
loss is recommended to reduce the risk of T2D opti-
mally [12], so further improvement of such a lifestyle 
program is essential.

Personalization or tailoring of the lifestyle interven-
tion can improve adherence [13], which can be facilitated 
with wearable technology for self-monitoring during 
a lifestyle intervention. An earlier study has shown that 
personalization leads to significantly improved lifestyle 
intervention outcomes in the SLIMMER CLI, includ-
ing weight loss (average of 5% vs 2% of weight loss after 
6  months) and drop-out rate (11% vs 26% of drop-outs 
after 6 months) [14]. Wearable sensors allow for monitor-
ing of physical activity and fitness, heart rate and sleep, 
but there is limited knowledge which of these health and 
lifestyle behavior outputs are related to improved weight 
loss. An earlier study showed that daily step count and 
minutes of high activity and self-monitoring behavior, 
in the form of self-weigh-ins and food-logging, are pre-
dictors of weight loss during a weight-loss intervention 
[15]. Currently, it is unclear if other health and lifestyle 
behavior measures from a wearable device, such as heart 
rate or sleep, are related to weight loss and subsequently 
could be used to tailor a lifestyle intervention.

Thus, it is of interest to know if health and lifestyle, 
as monitored by an activity tracker (Fitbit Charge 4) 
that assesses physical activity, heart rate and sleep and 
self-monitoring behavior are associated with individual 
weight loss during the intervention. Also, it is important 
to know if outputs from a Fitbit (Charge 4) can detect 
changes in these health and lifestyle behavior aspects. 
Therefore, we explored the changes over time in con-
tinuous Fitbit lifestyle and health related outputs, to gain 
insight in how lifestyle behavior and health changes dur-
ing a lifestyle intervention could be observed with a wear-
able device. Additionally, we investigated the association 
between individual weight loss with continuous lifestyle 
and health outputs from a Fitbit (Charge 4), including 
physical activity (PA), sleep, heart rate (HR) and self-
monitoring behaviors, during the personalized SLIM-
MER lifestyle intervention. These insights can help to 
further tailor lifestyle interventions to individual’s needs.
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Methods
 Study design
A retrospective analysis was performed to assess changes 
over time and the association of various Fitbit health and 
lifestyle parameters and self-monitoring behaviors on 
achieved individual weight loss during a personalized 
SLIMMER combined lifestyle intervention. Data used in 
this study was part of a larger intervention study that was 
designed to evaluate the efficacy of personalization on 
the SLIMMER lifestyle intervention [14]. This research 
will focus on changes in Fitbit parameters during the 
personalized SLIMMER lifestyle intervention. The study 
was approved by a Dutch Medical Ethics Committee in 
November 2020 (reference: NL75482.028.20) and is in 
accordance with the Helsinki Declaration of 1975 as 
revised in Brazil, 2013. The study is registered in a Dutch 
trial database register https://​onder​zoekm​etmen​sen.​nl/​
nl/​trial/​22186 on 11–12-2020. The full intervention with 
all methods, procedures and samples taken was previ-
ously published online [16]. In this section only meth-
ods and procedures relevant for the current study will be 
described.

The study was a parallel, cluster-randomized con-
trolled intervention study consisting of an intervention 
and a control group. Participants needed to be eligible to 
take part in the SLIMMER program. This meant people 
with obesity (BMI > 30) or overweight (BMI > 25) with an 
increased risk for cardiovascular diseases and/or T2D. 
An increased cardiovascular risk was defined as having 
high cholesterol values (total cholesterol ≥ 5  mmol/L, 
LDL-cholesterol ≥ 3  mmol/L, triglycerides ≥ 2  mmol/L, 
or HDL-cholesterol ≤ 1 mmol/L) and/or high blood pres-
sure (diastolic > 90  mmHg and/or systolic > 140  mmHg). 
An increased risk for T2D is defined by an impaired fast-
ing glucose between 6.1–6.9  mmol/L−1 or a Diabetes 
Risk Test score of ≥ 7 points. Further details on the in- 
and exclusion criteria are documented online [16]. The 
SLIMMER program was personalized for the interven-
tion group, which included ambulatory monitoring with 
an activity tracker and smart scale, an extended diagno-
sis based upon a person’s biomedical, contextual, and 
behavioral data, goals, and personalized lifestyle advice. 
For the current study we only used data from the inter-
vention group who received the personalized SLIMMER 
program.

Participants in the intervention arm came to the 
research facility one month before the start of the SLIM-
MER program. At this test day participants were pro-
vided with a smart body weight scale (the Fitbit Aria 
Air; Fitbit Inc., San Francisco, CA, USA), and an activ-
ity tracker (Fitbit Charge 4; Fitbit Inc., San Fransisco, CA, 
USA). Participants were monitored during approximately 
one months period prior (T-1 to T0) and during the first 

6 months of the personalized SLIMMER combined life-
style intervention (T0 to T6). Six months after the start, 
the test day at the research facility was repeated and the 
monitoring devices were returned. Data collection was 
from March 2021 to April 2022, during which several 
COVID-19 pandemic restrictions were in place [17].

 Subject inclusion
A total of n = 61 people with obesity (BMI > 30) or 
overweight (BMI > 25) with an increased risk for car-
diovascular diseases and/or T2D were included in the 
personalized SLIMMER intervention of which n = 54 
participants finished the personalized SLIMMER inter-
vention [14]. All subjects from the intervention arm who 
had minute to minute Fitbit data and body weight meas-
urements at start and at end of the study were included in 
the retrospective analysis.

Body weight
The main outcome parameter weight loss was meas-
ured at the research facility at start and at the end of the 
study (InBody, InBody Co., Ltd., Korea). We normal-
ized the weight loss at the end of the study, by dividing 
the weight at sixth month (T6) by the weight at the start 
of the study (T-1). Home-measured weight derived from 
the smart body weight scale (Fitbit Aria Air; Fitbit Inc., 
San Francisco, CA, USA) and synchronised with the Fit-
bit app. Participants were instructed to weigh themselves 
regularly (at least once a week, but preferably every day), 
in the morning at the same time and without clothes. 
Home measured weight was also normalized with the 
first weight measured with the smart body weight scale, 
by dividing all home measured weights during the study 
with the first home registered weight.

Activity tracker data pre‑processing
Data from the Fitbit was retrieved from the portal in 
March 2024 with the Fitbit web Application Program-
ming Interface. The Fitbit Charge 4 measures HR via 
photoplethysmography and step count (SC) with an 
accelerometer, which can be retrieved with a sampling 
frequency of one sample per minute. Next to that, Fitbit 
provides daily summary variables reflecting the users’ 
PA, HR, and sleep. These daily summary variables are 
always generated, regardless of wear time of the Fitbit 
during that day. Therefore, Fitbit data needs to be cleaned 
or pre-processed to ensure data quality. An overview of 
the pre-processing steps is shown in Fig. 1. Pre-process-
ing of the data was done in Python 3.12 (extension Spy-
der 5.5.0).

Currently there is no consensus on how much Fitbit 
wear-time is needed to reliably interpret physical activ-
ity or other health and lifestyle parameters [18]. We 
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determined the wear time of the Fitbit Charge 4 based 
on a combination of the minute HR and SC data. The 
activity tracker produces a zero value when no measure-
ment is available for the minute HR and SC data. In SC 
it is therefore important to make a distinction between 
zero values from missing data and from true zero val-
ues because of inactivity. We defined, similar to previous 
studies, all zero values in HR as missing data [18–20]. 
We classified SC as missing data when both HR and 
step count values were zero [20, 21]. SC higher than 200 
steps per minute were seen as outliers and removed [22]. 
Hereafter, we excluded days and nights with insufficient 

wear time. First the daytime, and nighttime were cat-
egorized by the Fitbit internal sleep algorithm. Daytime 
was set to be between 8:00–22:00, when sleep was not 
detected. Most studies report that HR should be available 
for more than 10 h of the waking hours [18, 19, 23, 24]. 
Similarly, we selected that HR should be available 70% 
of the time in both daytime and nighttime as sufficient 
wear time for respectively day- and nighttime [20]. Days 
with a daily step count of 1000 or more were included as 
days with sufficient wear time [18, 20, 23, 25]. PA related 
parameters were deleted when wear time during the day 
was insufficient based on the HR and SC criteria. Sleep 

Fig. 1  Overview of the pre-processing of the Fitbit data to ensure quality of Fitbit parameters, by removing Fitbit parameters when the wear time 
is insufficient. HR, PA and sleep daily parameters are defined in Table 1. HR = heart rate, SC = step count, PA = physical activity, RHR = resting heart rate
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related parameters were removed, when sleep was not 
detected by the internal algorithm or night-time wear 
was insufficient based on HR data. Sedentary time is 
overestimated when sleep was not measured and resting 
HR is most accurately measured during sleep [26]. There-
fore sedentary time and resting heart rate (RHR) were 
removed when there was insufficient night-time wear or 
when the Fitbit did not detect sleep. Subjects with less 
than 50  days of valid daytime wear were excluded from 
further analysis.

Model parameters
HR, PA, and sleep domain parameters were retrieved 
from the Fitbit daily summary parameters. Next to that, 
we determined self-monitoring behavior as the number 
of activity registrations per week (the number of activi-
ties logged per week by the participants on the Fitbit 
device), valid Fitbit wear-days per week, and number 
of weekly weigh-ins on the smart scale. An overview of 

the used parameters, abbreviations, explanation and 
domains can be found in Table 1. These parameters were 
selected from studies using Fitbit in an intervention [15, 
27, 28] or because of documented relation with obesity, 
weight-loss, diabetes [5], energy metabolism [6] or health 
[29]. Measurement length, and number of days with valid 
data was calculated for all subjects and parameters over 
the study period. In addition, the number of days with an 
weight-measurement from the smart-scale or an exercise 
recording were determined.

 Statistical analysis
We report the median and interquartile range ([IQR]) for 
the measurement length and data availability. The dif-
ferences between data availability before and after the 
start of the intervention was tested with the Wilcoxon 
rank-sum test. We consider a p-value < 0.05 as significant. 
After pre-processing data was exported to R (version 
4.4.0) for further statistical analysis [30].

Table 1  Parameters used in linear mixed effects models to study change over time and correlation with weight loss during the 
intervention

* Indicates variables which are calculated from Fitbit outputs and are not provided by Fitbit. ** Time in bed and sleep restless duration are both Fitbit outputs. abbr. 
abbreviation, bpm beats per minute, min minutes

Domain Variable name Abbr Unit Variable explanation Pre-processing removal Ref

Heart rate Resting Heart Rate RHR bpm Daily resting heart rate 
value, which is estimated 
during sleep

Insufficient day- 
and night-wear-time

[27]

Physical activity Step count SC steps/day Total steps taken 
for the day

Insufficient Day-wear-
time

[15, 27, 28]

Sedentary time hours/day Total minutes sedentary 
time. Minutes asleep are 
excluded by Fitbit

Insufficient day- 
and night-wear-time

[5]

Light physical activity LPA min/week or min/day Total minutes of light 
physical activity in a week

Insufficient day-wear-
time

[15, 28]

Moderate physical 
activity

MPA min/week or min/day Total minutes of mod-
erate physical activity 
in a week

Insufficient day-wear-
time

[15, 28]

Vigorous physical activity VPA min/week or min/day Total minutes of vigorous 
physical activity in a week

Insufficient day-wear-
time

[15, 28]

Sleep Sleep time hours/day Total number of minutes 
the user was asleep 
across all sleep records 
in the sleep log

Insufficient night-wear 
time

[27, 28]

Sleep efficiency* %/day Sleep time divided 
by time in bed (sleep 
time + sleep restless dura-
tion).**

Insufficient night-wear 
time

[27, 28]

Self-monitoring behav-
iour

Weigh-ins* days/week Number of smart-scale 
recorded weigh measure-
ments per week

[15]

Tracker worn* days/week Number of valid day-time 
measurement per week

[15]

Activity registrations* /week Number of activi-
ties logged per week 
by the participants 
on the Fitbit device

[15]
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Repeated measures correlation
To assess the correlation between the diverse Fitbit out-
puts and home-measured body weight derived from the 
smart body weight scale we used the repeated measures 
correlation (Rmcorr) [31]. Rmcorr, determines a lin-
ear fit for each participant using varying intercepts, for 
which we used the Rmcorr-package [32]. The data was 
rank transformed per participant before calculating the 
Rmcorr. This ensures the relation between the variables 
will be monotonic and linear. We then calculated the 
Rmcorr (ρ) and corresponding p-value. We only report 
on significant correlations that are considered moderate 
or higher, which was a |ρ| higher than 0.3. A correlation 
higher than 0.7 was considered a strong correlation [33].

Mixed effects models
We used mixed effects models to determine the mean 
and change over time in the activity tracker outputs. 
Data was split in two parts, one part before the interven-
tion (during run-in period of about 1 month; T-1 and T0) 
and another part during the 6-month intervention (from 
T0 to T6), as there might be a different effect before and 
during the intervention. Data before and after the inter-
vention was cut-off to the median length of the measure-
ments, as three participants had an exceptionally long 
run-in period (T-1 to T0), which had disproportionate 
effect on the model outcomes.

After data resizing, we fitted an separate linear mixed 
effects model for every Fitbit parameter before and dur-
ing the intervention (Table 1), with the nlme-package [34, 
35]. First, a model was fitted with time as fixed and par-
ticipant as a random intercept. To normalize the residu-
als of the models, the pre-processed Fitbit outputs were 
transformed when needed. Parameters with zero values 
over more than 25% of the time, were aggregated per 
week. After removal of days with insufficient wear time, 
daily averages of VPA and MPA had 32.6% and 28.2% of 
zeros in the data, respectively. Therefore, VPA and MPA 
were summed over a week. Hereafter, VPA was trans-
formed with Yeo-Johnson transformation and MPA with 
square root, to normalize the residuals of the model. 
Also, LPA and SC were transformed for normality with 
square root transformation. The random intercept model 
was compared to a model with a random intercept and 
slope for each participant. Next, we compared differ-
ent autoregressive-moving-average (ARMA) correlation 
structures for time because the model residuals showed 
significant autocorrelations. The most complex model 
we attempted to fit was a combination of p = 7 and q = 7. 
Finally, we compared the best random-correlation model 
with time as fixed effect. We used the model with the 
lowest Bayesian information criterion (BIC) and only a 
decrease of 2 was seen as considerable improvement of 

a more complex model [36]. The models were estimated 
with restricted maximum likelihood (REML) after selec-
tion of the linear mixed effects models to obtain more 
accurate estimates of the variances of the random effects. 
Finally, outcomes with a standardized residual greater 
than 2.5 standard deviations were excluded from analysis 
[37]. We report on group level average mean and change 
over time (slope), with 95% confidence intervals and sig-
nificance level. The difference in mean before and during 
the intervention was evaluated with Wilcoxon signed-
rank test. Figures were made to compare the estimated 
mean and change over time with the weekly median and 
IQR of the parameter.

Correlation model estimates and weight
Finally, the correlation between estimated model param-
eters and weight loss was assessed. For this, each par-
ticipant’s weight loss was Spearman correlated with the 
model estimates for random intercept and slope over 
time. We then created a scatter plot showing ranked 
weight loss versus these model estimates. Using ordi-
nary least squares regression, we estimated the slope and 
intercept between the ranked variables and calculated the 
95% confidence intervals.

Results
Included population and weight loss intervention effects
For the retrospective analysis, 34 (56%) out of the 61 
subjects had Fitbit minute data as well as body weight 
measurements at the start (T-1) and at the end (T6) of the 
study period. The minute-to-minute data was extracted 
from the web Application Programming Interface retro-
spectively after the study was completed. Data could not 
be downloaded from the portal for 27 (44%) participants, 
due to access rights. After pre-processing of the Fitbit 
data, two subjects (6%) were excluded from analyses as 
they did not have sufficient day-time Fitbit data (Fig. 1). 
Table 2 shows the weight loss of the 32 subjects used in 
this study. Overall, participants lost 4.7% [1.7%-7.7%] of 
their body weight. In this group, most participants (13, 
41%) had moderate weight loss of 5%-10%, 11 (34%) 
achieved modest weight loss of 0–5% and a small group 
(19%) gained weight. There are only two subjects (6%) 
with substantial (> 10%) weight loss.

 Activity tracker data availability
After Fitbit pre-processing the median length of the 
measurement was 220 [194.3–249.0] days. Measure-
ment length before the start of the intervention was 
35 [19.3–56.8] days and during the intervention 179 
[172.8–186.3] days. Three subjects started the study 
160 days before the start of the intervention. For these 
three subjects, whom started measuring 160 days before 
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the intervention, only the 30 days before the interven-
tion were used in further analyses. Table  3 shows the 
amount of available activity tracker data for the com-
plete study period. Overall, data availability during 
the study period is high, with data available between 
81.7%-86.7% of the days, depending on the pre-pro-
cessing. On average, participants weighed themselves 
every 4 days [2–10 days]. People rarely recorded exer-
cise on their activity tracker, with a median of 30.0 days 
[14.5–46.3] per subject, over the 220-day study period. 

Activity tracker data availability before and after start 
of the intervention (T0) can be found in supplementary 
Table  S1. There were no significant differences in the 
amount of activity tracker data availability before and 
after T0.

 Repeated measures correlation
Figure  2 shows the repeated measures (Spearman) cor-
relation for at home-measured weight with the smart 
weighing scale and the Fitbit outputs, defined in Table 1. 
The correlation coefficient is only displayed when the 
correlation is significant and higher than 0.3. At home-
measured weight with the smart scale has a significant 
moderate correlation with RHR (ρ = 0.30, p < 0.001). 
There is a moderate to strong correlation between the PA 
variables, step count, MPA and VPA. These PA variables 
all have moderate to strong correlations to the number 
of activities registered with the Fitbit. Sedentary time 
and sleep time have a negative correlation of ρ = -0.63 
(p < 0.001). This means that less sedentary time is meas-
ured on days with more recorded sleep time. The num-
ber of days the tracker was worn correlated strongly with 
LPA on a weekly basis (ρ = 0.70, p < 0.001). More signifi-
cant correlations were found between Fitbit parameters, 
but all had a weak correlation coefficient (ρ <|0.3|).

Table 2  Demographic data on and weight loss during the intervention for 32 participants included in the retrospective analysis. High 
education level refers to university or college degrees, middle to upper secondary or vocational training, and low to lower secondary 
or preparatory vocational education

BMI Body mass index

Average or number [IQR] or percentage

Males (n(%)) 8 25%

Females (n(%)) 24 75%

Age (years) 48.5 [40.8–55.3]

Blood pressure, at start of intervention (mmHg)

  Diastolic 82.8 [76.9–91.5]

  Systolic 135.3 [124.6–148.6]

Education level

  High 17 53%

  Middle 13 41%

  Low 2 6%

Body weight, at start of intervention (kg) 99.5 [88.5–106.8]

BMI, at start of intervention (kg/m2) 34.8 [30.6–36.7]

Waist circumference (cm) 106.0 [99.8–115.8]

Weight loss during intervention (%) 4.9% [1.7%-7.7%]

Substantial weight loss (> 10%) 2 6%

Moderate weight loss (5–10%) 13 41%

Modest weight loss (0–5%) 11 34%

Weight gain (> 0%) 6 19%

Weight loss (%) 4.9% [1.7%-7.7%]

Table 3  Recording length and data availability of the activity 
tracker during the study period in the included population

Data availability 
median [IQR](days)

Data 
availability 
ratio [IQR](%)

Recording length 220 [194.3–249.0]

After day-time removal 177 [157–224.5] 86.7 [75.6–97.0]

After night-time removal 179 [152.5–213.5] 86.5 [67.5–97.8]

After day- and night-time 
removal

163.5 [133.5–208.5] 81.7 [58.6–95.6]

Home-measured weight 
with the smart body weighing 
scale

54.5 [25.5–123] 27.3 [10.3–54.8]

Exercise recording count 30.0 [14.5–46.3] 13.1 [6.8–21.4]



Page 8 of 15Braem et al. BMC Digital Health             (2025) 3:8 

 Mixed effects models
Mixed effects models were used to assess whether Fitbit 
parameters changed over time before (from T-1 to T0) 
and during the intervention (from T0 to T6). The struc-
ture of the models used can be found in Supplementary 
Table 2. Since the change in the diverse Fitbit parameters 
could be dependent on body weight change during the 
intervention, weight loss groups were added as covariate 
to the model and evaluated on model fit. Interestingly, 
adding weight loss groups as covariate did not improve 
the model fit for any Fitbit parameter (BIC-criterium).

Table  4 gives the estimated mean for all parameters, 
before and during the intervention. No significant dif-
ference was found between the period before and during 
the intervention. The linear mixed effects estimate for 
change over time for the Fitbit parameters are presented 
in Table  5. Figure  3 shows the model estimated means 
and change over time in blue with the weekly median and 
IQR over time in grey, for parameters with significant 
changes over time. In MPA, VPA and in the number of 
the days the tracker was worn, there is an improvement 
in lifestyle behavior before the start of the intervention, 

whereafter these lifestyle behaviors decline during the 
intervention. Step count and number of activity registra-
tions increased during the 1-month before start of the 
intervention, but did not show a change during the inter-
vention. LPA and number of weekly weight measurement 
at home only showed a significant decline during the 
intervention, but not a change during the run-in period.

 Correlation model estimates with weight
To evaluate drivers of individual weight changes, the 
participant’s mean metrics and change over time were 
Spearman correlated with their change in body weight. 
All significant Spearman correlations are shown in Fig. 4. 
Weight loss has the strongest correlation with RHR, with 
a moderate correlation before (ρ = -0.46, p < 0.05) and 
during the intervention (ρ = -0.53, p < 0.01). Next to that, 
more weekly at home weight measurements is signifi-
cantly and moderately correlated with weight loss, before 
(ρ = 0.37, p < 0.05) and during the intervention (ρ = 0.41, 
p < 0.05). Participants who increased their number of 
weight measurements before the intervention achieved 
more weight loss (ρ = 0.42, p < 0.05). Less LPA and smaller 

Fig. 2  Repeated measures correlation for self-reported weight and Fitbit parameters, using ranked data. The color indicates correlation strength, 
with blue a positive and red a negative correlation. The lower triangle shows the correlation coefficient when significant and above |0.3|. The upper 
triangle shows the significance of the correlation, regardless of correlation value, with * = p < 0.05, ** = p < 0.01, *** = p < 0.001



Page 9 of 15Braem et al. BMC Digital Health             (2025) 3:8 	

increase in LPA before the intervention had a moder-
ate correlation with weight loss (ρ = -0.39 and ρ = -0.38 
respectively, p < 0.05). Finally, people with more sleep 
time during the intervention achieved more weight loss 
(ρ = 0.40, p < 0.05).

Discussion
This paper investigated if a wearable sensor could detect 
changes in lifestyle behavior and their correlation with 
weight loss during a lifestyle intervention. Associa-
tions between individual weight loss and physical activ-
ity, sleep, heart rate and self-monitoring behaviors from 
a Fitbit (Charge 4), were investigated in a retrospective 

analysis of a 6 months personalized SLIMMER combined 
lifestyle intervention. We observed health and lifestyle 
behaviors as determined by an activity tracker change 
over time, with significant improvements in physical 
activity and self-monitoring behavior especially before 
the intervention at the moment that the activity tracker 
and weighing scale were being provided to the partici-
pants, but this improvement was only partly maintained 
during the 6  months personalized combined lifestyle 
intervention. The changes in physical activity were not 
correlated with achieved weight loss because of the inter-
vention. Additionally, we found that the achieved weight 
loss was negatively associated with the individuals’ 

Table 4  Mean estimation from the fitted mixed effects models for each Fitbit parameter

RHR Resting heart rate, LPA Light physical activity, MPA Medium physical activity, VPA Vigorous physical activity, min minutes

Before intervention (T-1-T0) During intervention (T0-T2)

Domain Variable name Est [95% CI] Est [95% CI]

Heart rate RHR (bpm) 65.8 [62.5 – 69.1] 65.1 [62.2 – 68.1]

Physical activity Step count (steps/day) 8732 [7566– 9962] 8369 [7345 – 9460]

Sedentary time (hours/day) 9.0 [7.8 – 10.2] 8.4 [7.0 – 9.8]

LPA (min/week) 1631 [1465 – 1806] 1645 [1492 – 1805]

MPA (min/week) 117.8 [86.3 – 154.1] 122.0 [99.0 – 147.4]

VPA (min/week) 160.1 [112.9 – 218.9] 139.4 [103.2 – 183.3]

Sleep Sleep time (hours/day) 7.0 [6.3 – 7.6] 7.0 [6.5 – 7.5]

Sleep efficiency (%/day) 92.0 [88.3 – 95.6] 90.7 [86.4 – 95.0]

Self-monitoring behaviour Weigh-ins (days/week) 3.2 [2.0 – 4.3] 3.3 [2.4 – 4.1]

Tracker days (days/week) 6.2 [5.6 – 6.7] 6.5 [6.1 – 6.8]

Activity registrations
(number/week)

5.1 [3.7 – 6.6] 4.8 [3.5 – 6.1]

Table 5  Total change over time from the fitted mixed effects models for each Fitbit parameter

*  = p < 0.05, ** = p < 0.01, *** = p < 0.001

RHR Resting heart rate, LPA Light physical activity, MPA Medium physical activity, VPA Vigorous physical activity, min = minutes

Before intervention (T-1-T0) 35 days During intervention (T0-T2) 
179 days

Domain Variable name Est [95% CI] Est [95% CI]

Heart rate RHR (bpm) -1.4 [-3.1 – 0.3] 0.9 [-0.6 – 2.4]

Physical activity Step count (steps/day) 1667 [0 – 3511] *** -465 [-1016 – 107]

Sedentary time (hours/day) -0.3 [-0.9 – 0.2] -0.2 [-0.7 – 0.3]

LPA (min/week) 62.8 [0.0– 126.9] -78.2 [-152.9 – -1.6] *

MPA (min/week) 38.6 [0.0 – 84.9] * -28.6 [-40.4 – -16.1] ***

VPA (min/week) 65.6 [0.0 – 156] * -22.0 [-38.2 – -4.2] *

Sleep Sleep time (min/day) 1.4 [-19.5 – 22.3] -15.2 [-47.9 – 17.6]

Sleep efficiency (%/day) -0.1 [-0.1– 0.0] -0.2 [-0.5– 0.1]

Self-monitoring behaviour Weigh-ins (days/week) 0.9 [-0.0 – 1.9] -2.0 [-2.8 – -1.2] ***

Tracker days (days/week) 0.8 [0.1 – 1.5] * -0.7 [-1.0 – -0.5] ***

Activity registrations
(number/week)

1.6 [0.1 – 3.0] * -0.7 [-1.8 – 0.4]
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average resting heart rate (RHR) and positively with the 
number of home weight measurements, before and dur-
ing the combined lifestyle intervention. This shows that 
physiological health status and self-monitoring behaviors 
have a relation with the achieved weight loss as a result of 
the combined lifestyle intervention.

Interpretation
The first unexpected outcome is physical activity did 
not improve during the personalized combined lifestyle 
intervention, but the improvement in PA takes mainly 
place during the run-in period, before the start of the 
combined lifestyle intervention. It seems therefore that 
the foreseen start of the intervention and the provision 
of the activity tracker prompts participants to initiate a 

more physically active behavior, with increased MPA, 
VPA and SC. Likewise, there is an increase in self-moni-
toring behavior, as both the number of wear days and the 
number of exercises recorded with the Fitbit on a weekly 
basis rise. Unfortunately, these new behaviors slowly 
relapse to levels at the start of the study, with exception 
of step count. There is a decrease in LPA, MPA and VPA 
as well as in self-monitoring behavior. Although, some 
improvement in PA was seen in the month before the 
intervention, this was not clinically relevant, as the aver-
age before and during the intervention remained the 
same. An earlier study on the SLIMMER combined life-
style intervention shows significant improvement in all 
levels of PA, as measured with questionnaires (SQUASH) 
and reported higher baseline moderate to vigorous PA 

Fig. 3  Linear mixed effect model estimates for mean and changes over time (in blue) and weekly median and IQR (in grey). Significance levels 
for the models change over time is indicated in blue and differences in estimated means before and after the intervention in black (* = p < 0.05, 
** = p < 0.01, *** = p < 0.001.)
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levels and lower light PA levels (354 ± 427 VPA, 593 ± 692 
MPA, and 1307 ± 1094 LPA minutes per week vs 160 
[112.9 – 218.9] VPA and 118 [86.3 – 154.1] MPA, and 
1631 [1465 – 1806] LPA minutes per week) [11]. How-
ever, earlier research has shown that self-reporting 

results in higher moderate to vigorous physical activity 
(MVPA), when compared to the Fitbit [38, 39]. In the 
evaluation of the effect of the personalization on life-
style adherence and health outcomes of this study, self-
reported adherence to physical activity guideline did 

Fig. 4  Scatter plot of weight loss and significantly Spearman correlated Fitbit linear mixed effects model estimates. The line represents the ordinary 
least squares estimate of the slope and intercept on the ranked transformed variables, with corresponding 95% confidence interval in the grey area
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not improve in the intervention arm, in contrast to the 
control group [40], which is now confirmed by the evalu-
ation of objective measurements on PA through a fit-
ness tracker. A major mediator in physical activity levels 
might be the COVID-19 restrictions, which were present 
during the study runtime (2020–2022) [17]. Research by 
the Dutch government has shown, that Dutch people 
had altered physical activity patterns during lock-downs 
[41]. Vigorous exercise decreased, as sport facilities were 
forced to be closed, but in turn moderate activities, such 
as walking and cycling, increased. However, the general 
amount of physical activity did not decrease overall in the 
Netherlands. Interestingly, in this study more minutes 
of VPA than MPA were measured by the Fitbit. This dis-
crepancy is likely caused by the differences in MPA and 
VPA definitions by the SQUASH (used by Dutch govern-
ment) and Fitbit. Fitbit distinguishes moderate or vigor-
ous physical activity with a combination of HR and SC. 
Whereas SQUASH determines it by the type of activity 
or exercise, e.g., running is vigorous activity and cycling 
is a moderate activity. Past research has shown that PA 
measured with Fitbit versus self-reports only has weak to 
moderate correlation. Where Fitbit-measured PA has a 
stronger correlation with BMI than self-reported PA [39].

The main outcome of this study is that RHR has a 
moderate negative correlation with weight loss, before 
and during the intervention and has day-to-day cor-
relation with at home measured body weight. RHR can 
be seen as a general measurement for overall physical 
health [42]. RHR differs by age and sex and has shown to 
be independently associated with increased risk of pre-
diabetes and T2D in overweight people [43], low-grade 
inflammation in obese [44], metabolic syndrome [45] 
and overall mortality [42]. RHR decreases with increased 
physical activity and fitness [46, 47] and physical activ-
ity intervention studies have shown to reduce RHR in 
hypertensive [48] and COPD patients [49]. Against this 
background, it seems that participants who are gener-
ally fitter and already exercise, benefit more from the 
personalized SLIMMER combined lifestyle interven-
tion in terms of weight loss. In other combined lifestyle 
interventions targeting physical activity, diet and behav-
ior, RHR decreases significantly in children and (young) 
adults [50–52]. In this study, we only observed a nega-
tive correlation between RHR and weight loss, but a 
decrease in RHR during the intervention was not found. 
This may be the result of the unchanged fitness during 
the study period. In contrast, one previous study showed 
that a higher RHR, measured during a cardiopulmonary 
exercise test, predicts weight loss as a result of the life-
style modification treatment [53]. It was however unclear 
when RHR was measured in this study. Here we found a 
RHR of 65.5 bpm (CI [62.2 – 68.7] bpm, average age of 

49.6 ± 11.4  years) which is much lower as compared to 
the aforementioned studies (RHR of 85 ± 9 [51], 84.6 ± 4.2 
[44] and 86 bpm [53]), while reporting similar BMI values 
but in a 10–20  year younger population. Differences in 
these RHR values might be a result of the RHR measure-
ments timing. In this paper, the RHR is calculated from 
continuous HR data during the night, whereas in the 
other papers, RHR is measured at a clinical visit during 
the day after a few minutes of rest. Research has shown 
that RHR measurements are significantly lower at night 
than during the day [54].

In addition to RHR, also at home weight measure-
ments, LPA and sleep time were correlated with weight 
loss. A higher number of at home weight measurements 
is correlated with more weight loss during the interven-
tion. Also, a higher increase of at home weight measure-
ments before the intervention might be explained by a 
higher motivation or engagement with the combined 
lifestyle intervention. Therefore, self-monitoring of body 
weight is an important factor for weight loss during an 
intervention, which has been identified before [15]. Also, 
frequent self-monitoring of weight has been identified as 
an important behavior for long-term weight loss main-
tenance [55]. Surprisingly, participants with lower level 
of LPA before the intervention and less improvement of 
LPA during the intervention achieved more weight loss. 
Whereas, higher level of LPA has been known as a factor 
contributing to weight loss, and weight maintenance that 
consequently positively effects health outcomes [56, 57]. 
An earlier diet and PA weight intervention study with a 
wearable sensor reported a significant improvement in 
LPA during the intervention, while starting with similar 
levels of LPA (1566.7 [1467.7 – 1665.6] vs 1631 [1465 – 
1806] minutes per week) [58]. It is therefore unclear how 
the relation with decreased LPA and increased weight 
loss in this study originated. Finally, more weight loss 
was achieved by participants with longer sleep times 
during the intervention. The measured sleep time here 
is also lower than expected. In the Netherlands, the self-
reported average sleep time is about 8,3  h, which is an 
hour longer than reported here (7.0 [6.3–7.6] hours) [59]. 
However, self-reported sleep likely includes time in bed, 
which is separated by the Fitbit. It is therefore unclear, 
whether the relation between sleep time and weight loss 
seen here is reliable. Earlier research has shown incon-
sistent results regarding sleep time and weight loss dur-
ing a lifestyle intervention [60].

 Strengths and limitations
This retrospective analysis used 220  days of continuous 
real-world Fitbit data to investigate individual changes in 
lifestyle behavior and their correlation with weight loss 
before and during an intervention. This amount of data 
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allowed for in-depth and objective analysis of lifestyle 
behavior related to RHR, PA, sleep, and self-monitoring. 
With the data collected before the start of the interven-
tion, we could show that lifestyle behavior changes ini-
tiated already before the intervention. The use of linear 
mixed effect models allowed for individual estimates of 
lifestyle behavior changes, whereafter these could be 
explored in relation to individual weight loss. In addition, 
the data pre-processing ensured that only data with suf-
ficient quality was used in the analysis.

There are limitations to using Fitbit data for assess-
ing health and lifestyle changes. While the Fitbit Charge 
4 accurately measures HR at rest [61], step count [62], 
and sleep–wake-patterns [63], it overestimates steps 
in free-living conditions [62] and has increased heart 
rate bias during high-intensity activities [61]. Also, sed-
entary time may be skewed by short non-wear periods, 
such as during contact sports, leading to overestimated 
sedentary time and underestimated physical activity. 
Additionally, Fitbit’s sleep detection algorithm misclassi-
fies lying awake in bed as sedentary time, resulting in a 
strong negative correlation between sleep time and sed-
entary time (Fig. 2). Thus, even with data pre-processing, 
sedentary time might not be an accurate Fitbit outcome. 
These reported inaccuracies of the device, however, have 
limited influence on the presented outcomes. The Fitbit 
device has only two physiological sensors, one for heart 
rate and one for acceleration. These sensors generate 
multiple daily summary variables through unknown data 
processing. This paper shows high correlations among PA 
variables, such as daily step count, VPA, and MPA, rais-
ing questions about whether all these parameters provide 
additional information.

In this retrospective analysis we used a subgroup of 32 
participants from a total of 61 participants in the inter-
vention arm. This subgroup of participants seem to be 
representative of the whole intervention population, as 
the currently reported weight loss after 6 months (4.9%) 
is similar to that of the complete intervention arm (5%) 
[14]. However, the number of subjects in this study is rel-
atively small.

Future research
This paper and other work using fitness trackers in life-
style interventions focus on the daily summary values 
of the Fitbit tracker. In this way, much granularity and 
details of the Fitbit data is discarded. Minute-to-minute 
HR and step count data can be used to objectively study 
daily and weekly behavior patterns. Therefore, as future 
research the authors would suggest investigating behav-
ior patterns based on minute-to-minute data and associ-
ate these to changes weight loss behavior, as these can be 
used for further personalization of lifestyle interventions.

 Conclusion
In this paper we studied the association between indi-
vidual weight loss with continuous lifestyle parameters 
from a Fitbit Charge 4 before and during a 6-month 
combined lifestyle intervention. A lower average RHR 
before and during the intervention is correlated with 
more weight loss. This seems to indicate that gener-
ally healthier and fitter participants at the start of the 
combined lifestyle intervention can achieve more 
weight loss. Daily step count, VPA and MPA improved 
in the 1-month period before the intervention, but this 
increase was not maintained during the intervention 
and MPA and VPA was not significantly higher during 
the intervention.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s44247-​024-​00145-1.

Supplementary Material 1. Supplementary Table 1 – Data availability 
during the study periods, complete study period, before start of lifestyle 
intervention, and after start of lifestyle intervention.

Supplementary Material 2. Supplementary Table 2 – Fitted mixed effects 
model structure for each Fitbit parameter before and after start of the 
lifestyle intervention.

Acknowledgements
The authors thank Joelle Oosterman and Iris de Hoogh for the design of the 
study and together with Dagmar Smid and Kristel Kamstra and other support-
ing staff for realizing the personalized SLIMMER study. Besides, the authors 
thank all participants of for their invaluable contributions in the study, without 
them this research was not possible.

Authors’ contributions
Conceptualization: C.B., U.Y., P.V., and S.W.; Acquisition, data analysis: C.B., U.Y., 
W.P., T.B., M.C., F.J., and S.W.; Interpretation of data: C.B., U.Y., and S.W.; Writing — 
original draft and figures: C.B.; Writing — review and editing: U.Y., W.P., H.H., P.V., 
and S.W.; Supervision: U.Y., H.H., P.V., and S.W. All authors have read and agreed 
to the published version of the manuscript.

Funding
This research was funded by Dutch Research Council (NWO), grant number 
628.011.021.

Data availability
The datasets presented in this publication are available upon reasonable 
request. Requests to access the datasets should be directed to corresponding 
author.

Declarations

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki and 
approved by Medical Ethics Committee ‘METC Brabant’ (NL75482.028.20) in 
November 2020 and registered in the Dutch Trial Register https://​onder​zoekm​
etmen​sen.​nl/​nl/​trial/​22186 on the 11th of December 2020. Informed consent 
was obtained from every subjects in this study and included information that 
the study results will be published.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1186/s44247-024-00145-1
https://doi.org/10.1186/s44247-024-00145-1
https://onderzoekmetmensen.nl/nl/trial/22186
https://onderzoekmetmensen.nl/nl/trial/22186


Page 14 of 15Braem et al. BMC Digital Health             (2025) 3:8 

Author details
1 Faculty of Electrical Engineering, Mathematics and Computer Science, 
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. 
2 Research Group Microbiology and Systems Biology, Netherlands Organiza-
tion for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, The 
Netherlands. 

Received: 30 July 2024   Accepted: 27 December 2024

References
	1.	 “Obesity and overweight.” Accessed: May 14, 2024. [Online]. Available: 

https://​www.​who.​int/​news-​room/​fact-​sheets/​detail/​obesi​ty-​and-​overw​
eight

	2.	 van der Valk ES, et al. A comprehensive diagnostic approach to detect 
underlying causes of obesity in adults. Obes Rev. 2019;20(6):795–804. 
https://​doi.​org/​10.​1111/​obr.​12836.

	3.	 Astrup A, Finer N. Redefining Type 2 diabetes: ‘Diabesity’ or ‘Obesity 
Dependent Diabetes Mellitus’? Obes Rev. 2000;1(2):57–9. https://​doi.​org/​
10.​1046/j.​1467-​789x.​2000.​00013.x.

	4.	 Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes 
mellitus: A review. Int J Health Sci. 2017;11(2):65–71.

	5.	 Colberg SR, et al. Exercise and Type 2 Diabetes. Diabetes Care. 
2010;33(12):e147–67. https://​doi.​org/​10.​2337/​dc10-​9990.

	6.	 Chaput J-P. Sleep patterns, diet quality and energy balance. Physiol 
Behav. 2014;134:86–91. https://​doi.​org/​10.​1016/j.​physb​eh.​2013.​09.​006.

	7.	 Kline CE. The Bidirectional Relationship Between Exercise and Sleep: 
Implications for Exercise Adherence and Sleep Improvement. Am J Life-
style Med. 2014;8(6):375–9. https://​doi.​org/​10.​1177/​15598​27614​544437.

	8.	 Lindström J, et al. The Finnish Diabetes Prevention Study (DPS): Lifestyle 
intervention and 3-year results on diet and physical activity. Diabetes 
Care. 2003;26(12):3230–6. https://​doi.​org/​10.​2337/​diaca​re.​26.​12.​3230.

	9.	 Lindström J, et al. Improved lifestyle and decreased diabetes risk over 13 
years: long-term follow-up of the randomised Finnish Diabetes Preven-
tion Study (DPS). Diabetologia. 2013;56(2):284–93. https://​doi.​org/​10.​
1007/​s00125-​012-​2752-5.

	10.	 Roumen C, Corpeleijn E, Feskens EJM, Mensink M, Saris WHM, Blaak EE. 
Impact of 3-year lifestyle intervention on postprandial glucose metabo-
lism: the SLIM study: Original article. Diabet Med. 2008;25(5):597–605. 
https://​doi.​org/​10.​1111/j.​1464-​5491.​2008.​02417.x.

	11.	 Duijzer G, et al. Effect and maintenance of the SLIMMER diabetes preven-
tion lifestyle intervention in Dutch primary healthcare: a randomised 
controlled trial. Nutr Diabetes. 2017;7(5):e268–e268. https://​doi.​org/​10.​
1038/​nutd.​2017.​21.

	12.	 Grams J, Garvey WT. Weight Loss and the Prevention and Treatment of 
Type 2 Diabetes Using Lifestyle Therapy, Pharmacotherapy, and Bariatric 
Surgery: Mechanisms of Action. Curr Obes Rep. 2015;4(2):287–302. 
https://​doi.​org/​10.​1007/​s13679-​015-​0155-x.

	13.	 van Ommen B, et al. Systems biology of personalized nutrition. Nutr Rev. 
2017;75(8):579–99. https://​doi.​org/​10.​1093/​nutrit/​nux029.

	14.	 Smid DJ, et al. The effect of extended personalization to a combined 
lifestyle intervention program in Dutch primary care. Ned Tijdschr Voor 
Diabetol. 2024;22(4):8–61. https://​doi.​org/​10.​1007/​s12467-​024-​1573-8.

	15.	 Painter SL, et al. What Matters in Weight Loss? An In-Depth Analysis of 
Self-Monitoring. J Med Internet Res. 2017;19(5): e7457. https://​doi.​org/​10.​
2196/​jmir.​7457.

	16.	 “Personalised combined lifestyle intervention | Onderzoek met mensen.” 
Accessed: Nov. 07, 2024. [Online]. Available: https://​onder​zoekm​etmen​
sen.​nl/​nl/​trial/​22186

	17.	 Zijlmans J, et al. The effects of COVID-19 on child mental health: Biannual 
assessments up to April 2022 in a clinical and two general population 
samples. JCPP Adv. 2023;3(2): e12150. https://​doi.​org/​10.​1002/​jcv2.​12150.

	18.	 Orstad SL, et al. Defining Valid Activity Monitor Data: A Multimethod 
Analysis of Weight-Loss Intervention Participants’ Barriers to Wear and 
First 100 Days of Physical Activity. Inform MDPI. 2021;8(2):39. https://​doi.​
org/​10.​3390/​infor​matic​s8020​039.

	19.	 Claudel SE, et al. Comparing Methods to Identify Wear-Time Inter-
vals for Physical Activity With the Fitbit Charge 2. J Aging Phys Act. 
2020;29(3):529–35. https://​doi.​org/​10.​1123/​japa.​2020-​0059.

	20.	 Braem CIR, Yavuz US, Hermens HJ, Veltink PH. Missing Data Statistics 
Provide Causal Insights into Data Loss in Diabetes Health Monitoring by 
Wearable Sensors. Sensors. 2024;24:5. https://​doi.​org/​10.​3390/​s2405​1526.

	21.	 Wing D, et al. Recommendations for Identifying Valid Wear for Consumer-
Level Wrist-Worn Activity Trackers and Acceptability of Extended Device 
Deployment in Children. Sensors. 2022;22:23. https://​doi.​org/​10.​3390/​
s2223​9189.

	22.	 de Ruiter CJ, van Daal S, van Dieën JH. Individual optimal step frequency 
during outdoor running. Eur J Sport Sci. 2020;20(2):182–90. https://​doi.​
org/​10.​1080/​17461​391.​2019.​16269​11.

	23.	 Matlary RED, Holme PA, Glosli H, Rueegg CS, Grydeland M. Comparison of 
free-living physical activity measurements between ActiGraph GT3X-BT 
and Fitbit Charge 3 in young people with haemophilia. Haemophilia. 
2022;28(6):e172–80. https://​doi.​org/​10.​1111/​hae.​14624.

	24.	 Tamura K, et al. Multilevel mobile health approach to improve cardio-
vascular health in resource-limited communities with Step It Up: a ran-
domised controlled trial protocol targeting physical activity. BMJ Open. 
2020;10(12):e040702. https://​doi.​org/​10.​1136/​bmjop​en-​2020-​040702.

	25.	 Hardcastle SJ, Jiménez-Castuera R, Maxwell-Smith C, Bulsara MK, Hince D. 
Fitbit wear-time and patterns of activity in cancer survivors throughout a 
physical activity intervention and follow-up: Exploratory analysis from a 
randomised controlled trial. PLoS ONE. 2020;15(10):e0240967. https://​doi.​
org/​10.​1371/​journ​al.​pone.​02409​67.

	26.	 “Fitbit Development: Get Heart Rate Intraday by Date.” Accessed: May 14, 
2024. [Online]. Available: https://​dev.​fitbit.​com/​build/​refer​ence/​web-​api/​
intra​day/​get-​heart​rate-​intra​day-​by-​date/

	27.	 Lee JE, et al. Clinical Feasibility of Continuously Monitored Data for 
Heart Rate, Physical Activity, and Sleeping by Wearable Activity Trackers 
in Patients with Thyrotoxicosis: Protocol for a Prospective Longitudinal 
Observational Study. JMIR Res Protoc. 2018;7(2):e49. https://​doi.​org/​10.​
2196/​respr​ot.​8119.

	28.	 R. J. Crochiere, F. (Zoe) Zhang, A. S. Juarascio, S. P. Goldstein, J. G. Thomas, 
and E. M. Forman, “Comparing ecological momentary assessment to 
sensor-based approaches in predicting dietary lapse,” Transl. Behav. Med.. 
2021,11(12): 2099–2109. https://​doi.​org/​10.​1093/​tbm/​ibab1​23.

	29.	 J.-P. Chaput et al., “Sleep timing, sleep consistency, and health in adults: a 
systematic review,” Appl. Physiol. Nutr. Metab. 2020;45(10 (Suppl. 2):S232–
S247. https://​doi.​org/​10.​1139/​apnm-​2020-​0032.

	30.	 R Core Team, R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing. Vienna: Austria; 2024.

	31.	 J. Z. Bakdash and L. R. Marusich. Repeated Measures Correlation. Front. 
Psychol. 2017,8. Accessed: Aug. 21, 2023. Available: https://www.frontier-
sin.org/articles/https://​doi.​org/​10.​3389/​fpsyg.​2017.​00456

	32.	 J. Z. Bakdash and L. R. Marusich, rmcorr: Repeated Measures Correlation. 
(2023). Accessed: Jun. 12, 2024. [Online]. Available: https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​rmcorr/​index.​html

	33.	 Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 
2018;18(3):91–3. https://​doi.​org/​10.​1016/j.​tjem.​2018.​08.​001.

	34.	 Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. Springer sci-
ence & business media; 2006. https://​doi.​org/​10.​1007/​b98882.

	35.	 J. P. (S version) et al., nlme: Linear and Nonlinear Mixed Effects Models. 
(2024). Accessed: Jun. 12, 2024. [Online]. Available: https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​nlme/​index.​html

	36.	 Lorah J, Womack A. Value of sample size for computation of the Bayesian 
information criterion (BIC) in multilevel modeling. Behav Res Methods. 
2019;51(1):440–50. https://​doi.​org/​10.​3758/​s13428-​018-​1188-3.

	37.	 A. Tremblay, S. Canada, and J. Ransijn, and U. of Copenhagen, LMER-
ConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER 
Models. (2020). Accessed: Jun. 12, 2024. [Online]. Available: https://​cran.r-​
proje​ct.​org/​web/​packa​ges/​LMERC​onven​ience​Funct​ions/​index.​html

	38.	 Oosterom N, et al. Physical Activity in Patients With Type 2 Diabetes: The 
Case for Objective Measurement in Routine Clinical Care. Diabetes Care. 
2018;41(4):e50–1. https://​doi.​org/​10.​2337/​dc17-​2041.

	39.	 Beagle AJ, Tison GH, Aschbacher K, Olgin JE, Marcus GM, Pletcher MJ. 
Comparison of the Physical Activity Measured by a Consumer Wearable 
Activity Tracker and That Measured by Self-Report: Cross-Sectional Analy-
sis of the Health eHeart Study. JMIR MHealth UHealth. 2020;8(12):e22090. 
https://​doi.​org/​10.​2196/​22090.

	40.	 J. E. Oosterman et al., “The effect of extended personalization to a com-
bined lifestyle intervention program in Dutch primary care.,” [Manuscript 
submitted for publication].

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://doi.org/10.1111/obr.12836
https://doi.org/10.1046/j.1467-789x.2000.00013.x
https://doi.org/10.1046/j.1467-789x.2000.00013.x
https://doi.org/10.2337/dc10-9990
https://doi.org/10.1016/j.physbeh.2013.09.006
https://doi.org/10.1177/1559827614544437
https://doi.org/10.2337/diacare.26.12.3230
https://doi.org/10.1007/s00125-012-2752-5
https://doi.org/10.1007/s00125-012-2752-5
https://doi.org/10.1111/j.1464-5491.2008.02417.x
https://doi.org/10.1038/nutd.2017.21
https://doi.org/10.1038/nutd.2017.21
https://doi.org/10.1007/s13679-015-0155-x
https://doi.org/10.1093/nutrit/nux029
https://doi.org/10.1007/s12467-024-1573-8
https://doi.org/10.2196/jmir.7457
https://doi.org/10.2196/jmir.7457
https://onderzoekmetmensen.nl/nl/trial/22186
https://onderzoekmetmensen.nl/nl/trial/22186
https://doi.org/10.1002/jcv2.12150
https://doi.org/10.3390/informatics8020039
https://doi.org/10.3390/informatics8020039
https://doi.org/10.1123/japa.2020-0059
https://doi.org/10.3390/s24051526
https://doi.org/10.3390/s22239189
https://doi.org/10.3390/s22239189
https://doi.org/10.1080/17461391.2019.1626911
https://doi.org/10.1080/17461391.2019.1626911
https://doi.org/10.1111/hae.14624
https://doi.org/10.1136/bmjopen-2020-040702
https://doi.org/10.1371/journal.pone.0240967
https://doi.org/10.1371/journal.pone.0240967
https://dev.fitbit.com/build/reference/web-api/intraday/get-heartrate-intraday-by-date/
https://dev.fitbit.com/build/reference/web-api/intraday/get-heartrate-intraday-by-date/
https://doi.org/10.2196/resprot.8119
https://doi.org/10.2196/resprot.8119
https://doi.org/10.1093/tbm/ibab123
https://doi.org/10.1139/apnm-2020-0032
https://doi.org/10.3389/fpsyg.2017.00456
https://cran.r-project.org/web/packages/rmcorr/index.html
https://cran.r-project.org/web/packages/rmcorr/index.html
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1007/b98882
https://cran.r-project.org/web/packages/nlme/index.html
https://cran.r-project.org/web/packages/nlme/index.html
https://doi.org/10.3758/s13428-018-1188-3
https://cran.r-project.org/web/packages/LMERConvenienceFunctions/index.html
https://cran.r-project.org/web/packages/LMERConvenienceFunctions/index.html
https://doi.org/10.2337/dc17-2041
https://doi.org/10.2196/22090


Page 15 of 15Braem et al. BMC Digital Health             (2025) 3:8 	

	41.	 E. de Hollander et al., “Invloed van de corona-epidemie op de gezondheid 
en leefstijl van Nederlandse volwassenen,” Rijksinstituut voor Volksge-
zondheid en Milieu RIVM, Report, Apr. 2023. Accessed: Jun. 18, 2024. 
[Online]. Available: https://​rivm.​openr​eposi​tory.​com/​handle/​10029/​
626647

	42.	 Olshansky B, Ricci F, Fedorowski A. Importance of resting heart rate. 
Trends Cardiovasc Med. 2023;33(8):502–15. https://​doi.​org/​10.​1016/j.​tcm.​
2022.​05.​006.

	43.	 Zhang SY, et al. Overweight, resting heart rate and prediabetes/diabetes: 
A population-based prospective cohort study among Inner Mongolians 
in China. Sci Rep. 2016;6(1):23939. https://​doi.​org/​10.​1038/​srep2​3939.

	44.	 Al-Rashed F, et al. Elevated resting heart rate as a predictor of inflam-
mation and cardiovascular risk in healthy obese individuals. Sci Rep. 
2021;11:13883. https://​doi.​org/​10.​1038/​s41598-​021-​93449-5.

	45.	 Rogowski O, et al. Elevated resting heart rate is associated with the meta-
bolic syndrome. Cardiovasc Diabetol. 2009;8:55. https://​doi.​org/​10.​1186/​
1475-​2840-8-​55.

	46.	 Rexhepi AM, Brestovci B. Prediction of VO 2 max based on age, body 
mass, and resting heart rate. Hum Mov. 2018;15(1):56–9. https://​doi.​org/​
10.​2478/​humo-​2014-​0003.

	47.	 Reimers AK, Knapp G, Reimers C-D. Effects of Exercise on the Resting 
Heart Rate: A Systematic Review and Meta-Analysis of Interventional 
Studies. J Clin Med. 2018;7(12):503. https://​doi.​org/​10.​3390/​jcm71​20503.

	48.	 Alemayehu A, Teferi G. Effectiveness of Aerobic, Resistance, and Com-
bined Training for Hypertensive Patients: A Randomized Controlled Trial. 
Ethiop J Health Sci. 2023;33(6):1063–74. https://​doi.​org/​10.​4314/​ejhs.​
v33i6.​17.

	49.	 İ. Naz, H. Şahin, and B. Aktaş. Predictors of improvement in resting heart 
rate after exercise training in patients with chronic obstructive pulmo-
nary disease. Ir. J. Med. Sci. 1971. 2022;191(4):1613–1619. https://​doi.​org/​
10.​1007/​s11845-​021-​02771-4.

	50.	 Kerrigan SG, Call C, Schaumberg K, Forman E, Butryn ML. Associations 
between change in sedentary behavior and outcome in standard behav-
ioral weight loss treatment. Transl Behav Med. 2018;8(2):299–304. https://​
doi.​org/​10.​1093/​tbm/​ibx038.

	51.	 Morgan PJ, et al. The ‘Healthy Dads, Healthy Kids’ randomized controlled 
trial: efficacy of a healthy lifestyle program for overweight fathers and 
their children. Int J Obes. 2011;35(3):436–47. https://​doi.​org/​10.​1038/​ijo.​
2010.​151.

	52.	 Q. Yang, K. Wang, Q. Tian, J. Zhang, L. Qi, and T. Chen, “Effect of Diet and 
Exercise-Induced Weight Loss among Metabolically Healthy and Meta-
bolically Unhealthy Obese Children and Adolescents. Int. J. Environ. Res. 
Public. Health. 2022;19(10):10. https://​doi.​org/​10.​3390/​ijerp​h1910​6120.

	53.	 Gruchała-Niedoszytko M, et al. Cardiopulmonary exercise test and 
bioimpedance as prediction tools to predict the outcomes of obesity 
treatment. Pol Arch Intern Med. 2019;129(4):225–33. https://​doi.​org/​10.​
20452/​pamw.​4480.

	54.	 Speed C, et al. Measure by measure: Resting heart rate across the 24-hour 
cycle. PLOS Digit Health. 2023;2(4):e0000236. https://​doi.​org/​10.​1371/​
journ​al.​pdig.​00002​36.

	55.	 Wing RR, Hill JO. SUCCESSFUL WEIGHT LOSS MAINTENANCE. Annu Rev 
Nutr. 2001;21:323–41. https://​doi.​org/​10.​1146/​annur​ev.​nutr.​21.1.​323.

	56.	 Bourdier P, Simon C, Bessesen DH, Blanc S, Bergouignan A. The role 
of physical activity in the regulation of body weight: The overlooked 
contribution of light physical activity and sedentary behaviors. Obes Rev. 
2023;24(2):e13528. https://​doi.​org/​10.​1111/​obr.​13528.

	57.	 Amagasa S, et al. Is objectively measured light-intensity physical activity 
associated with health outcomes after adjustment for moderate-to-
vigorous physical activity in adults? A systematic review. Int J Behav Nutr 
Phys Act. 2018;15(1):65. https://​doi.​org/​10.​1186/​s12966-​018-​0695-z.

	58.	 Jakicic JM, et al. Effect of Wearable Technology Combined With a Lifestyle 
Intervention on Long-term Weight Loss: The IDEA Randomized Clinical 
Trial. JAMA. 2016;316(11):1161–71. https://​doi.​org/​10.​1001/​jama.​2016.​
12858.

	59.	 A. Roeters, “Personal care,” Time Use Neth. Ed. 2, Jul. 2019, Accessed: Jul. 02, 
2024. [Online]. Available: https://​digit​al.​scp.​nl/​timeu​se2/​perso​nal-​care

	60.	 S. A. Creasy et al., Effect of Sleep on Weight Loss and Adherence to Diet 
and Physical Activity Recommendations during an 18-month Behavio-
ral Weight Loss Intervention. Int. J. Obes 2005. 2022; 46(8):1510–1517. 
https://​doi.​org/​10.​1038/​s41366-​022-​01141-z.

	61.	 Nissen M, et al. Heart Rate Measurement Accuracy of Fitbit Charge 4 and 
Samsung Galaxy Watch Active2: Device Evaluation Study. JMIR Form Res. 
2022;6(3):e33635. https://​doi.​org/​10.​2196/​33635.

	62.	 Waddell A, Birkett S, Broom D, McGregor G, Harwood AE. Validating the 
Fitbit Charge 4© wearable activity monitor for use in physical activity 
interventions. J Sci Med Sport. 2024;27(5):314–8. https://​doi.​org/​10.​
1016/j.​jsams.​2024.​01.​007.

	63.	 Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Accu-
racy of Wristband Fitbit Models in Assessing Sleep: Systematic Review 
and Meta-Analysis. J Med Internet Res. 2019;21(11):e16273. https://​doi.​
org/​10.​2196/​16273.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://rivm.openrepository.com/handle/10029/626647
https://rivm.openrepository.com/handle/10029/626647
https://doi.org/10.1016/j.tcm.2022.05.006
https://doi.org/10.1016/j.tcm.2022.05.006
https://doi.org/10.1038/srep23939
https://doi.org/10.1038/s41598-021-93449-5
https://doi.org/10.1186/1475-2840-8-55
https://doi.org/10.1186/1475-2840-8-55
https://doi.org/10.2478/humo-2014-0003
https://doi.org/10.2478/humo-2014-0003
https://doi.org/10.3390/jcm7120503
https://doi.org/10.4314/ejhs.v33i6.17
https://doi.org/10.4314/ejhs.v33i6.17
https://doi.org/10.1007/s11845-021-02771-4
https://doi.org/10.1007/s11845-021-02771-4
https://doi.org/10.1093/tbm/ibx038
https://doi.org/10.1093/tbm/ibx038
https://doi.org/10.1038/ijo.2010.151
https://doi.org/10.1038/ijo.2010.151
https://doi.org/10.3390/ijerph19106120
https://doi.org/10.20452/pamw.4480
https://doi.org/10.20452/pamw.4480
https://doi.org/10.1371/journal.pdig.0000236
https://doi.org/10.1371/journal.pdig.0000236
https://doi.org/10.1146/annurev.nutr.21.1.323
https://doi.org/10.1111/obr.13528
https://doi.org/10.1186/s12966-018-0695-z
https://doi.org/10.1001/jama.2016.12858
https://doi.org/10.1001/jama.2016.12858
https://digital.scp.nl/timeuse2/personal-care
https://doi.org/10.1038/s41366-022-01141-z
https://doi.org/10.2196/33635
https://doi.org/10.1016/j.jsams.2024.01.007
https://doi.org/10.1016/j.jsams.2024.01.007
https://doi.org/10.2196/16273
https://doi.org/10.2196/16273

	The association of physical activity, heart rate and sleep from an activity tracker with weight loss during a 6-month personalized combined lifestyle intervention: a retrospective analysis
	Abstract 
	Background 
	Methods 
	Findings 
	Conclusions 

	Introduction
	Methods
	 Study design
	 Subject inclusion
	Body weight
	Activity tracker data pre-processing
	Model parameters
	 Statistical analysis
	Repeated measures correlation
	Mixed effects models
	Correlation model estimates and weight

	Results
	Included population and weight loss intervention effects

	 Activity tracker data availability
	 Repeated measures correlation
	 Mixed effects models

	 Correlation model estimates with weight
	Discussion
	Interpretation
	 Strengths and limitations
	Future research

	 Conclusion
	Acknowledgements
	References


